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ABSTRACT

This report deals with the analysis of dynamic configuration of label switched paths
(LSPs) with help of the project: mpls-linux. This analysis was made over a virtual
testbed which was created with Netkit and User-Mode Linux (UML) under Linux. Dif-
ferent scripts were developed in order to configure the LSPs and allow a datastream to
switch from one LSP to another.

This paper starts with explaining the main MultiProtocol Label Switching (MPLS)
concepts. The reader that already masters these concepts may safely skip this chapter.
Then, the virtual testbed is described as well as the underlying concepts of virtual ma-
chines. Afterwards, the use of an implementation of the Label Distribution Protocol
(LDP) is described to create a LSP based on an IP-prefix FEC (i.e. destination-based
FEC). In the following chapter, the explicit routing and dynamic rerouting of LSP is
outlined. Finally, pointers to further research will be exposed.

RESUME

Ce rapport décrit I’analyse de configuration dynamique de “chemins d’échange de
label” (LSPs) avec 1’aide du projet: mpls-linux. Cette analyse a été éffectuée sous
Linux, grace a un testbed virtuel créé a 1’aide de Netkit et de User-Mode Linux (UML).
Différents scripts ont été développés pour configurer les LSPs et permettre a un flux de
données de passer d’un LSP a un autre.

Ce mémoire s’ouvre sur la prsentation des principaux concepts du multi-protocol
d’échange de label (MPLS), Le lecteur matrisant déja ces concepts peut passer ce cha-
pitre. Ensuite, une description du testbed virtuel sera donnée ansi que des concepts sous-
jacents aux machines virtuelles. Suite a cela viendra une description de I'utilisation
de I'implémentation du protocole de distribution de labels qui servira a créer un LSP
bas sur un FEC a préfix IP. Dans le chapitre suivant, le routage explicite et reroutage
dynamique de LSP sera décrit. Finalement, des pointeurs vers de futures recherches
seront donnés.






PREFACE

This report is mainly the result of a contribution to a European project called AROMA,
carried out in Fall 2006 in the Universitat Politecnica de Catalunya (Barcelona, Spain)
and continued in the University of Namur (Belgium) in spring 2007.

The structure of the report does not exactly reflect the way this project was con-
ducted. This AROMA project aims to guarantee the end-to-end QoS in the context of an
all-IP heterogeneous network. The documentation on the AROMA testbed and MPLS
came first. Then, the validation of the MPLS and LDP implementation was done. Af-
terwards, MPLS was installed on the AROMA testbed after upgrading it in order to be
compliant with its requirements. Afterwards, the set up of a virtual testbed designed the
same way as the AROMA testbed was necessary to continue the tests. Finally, simula-
tions concerning dynamic LSP configuration were executed and the results are exposed
in this document.

I would like to thank my supervisor, Laurent Schumacher, for his guidance during
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CHAPTER 1

MULTI-PROTOCOL LABEL
SWITCHING

tally different approaches in networking: datagram and virtual circuit. The
datagram model use routing protocols to precalculate the paths to all desti-
nation networks by exchanging routing information, and each packet is forwarded in-
dependently based on its destination address. On the other hand, a virtual circuit must
be set up explicitly by a signaling protocol before packets can be transmitted into the
network. MPLS is designed to allow a virtual circuit to be set up in a datagram network.

M ultiprotocol Label Switching represents the convergence of two fundamen-

Label switching uses a short, fixed-length label inserted in the packet header to
forward packets. A label-switched router (LSR) uses the label in the packet header as
a index to find the next hop and the corresponding new label. The packet is sent to
its next hop after the existing label is swapped with the new one assigned for the next
hop. The path that the packet traverses through a network is defined by the transition
in label values. Such a path is called a label-switched path (LSP). Since the mapping
between labels is fixed at each LSR, an LSP is determined by the initial label value at
the first LSR of the LSP. The purpose of label switching is not to replace IP routing but
rather to enhance the services provided in the IP networks by offering scope for traffic
engineering, guaranteed QoS, and virtual private network (VPNs).

In this chapter, the architecture and protocols of MPLS will be discussed. The first
section will introduce few routing concepts and network management. The second sec-
tion explains the differences between the two the fundamental networking concepts,
routing versus switching. The third section exposes the architecture of MPLS. Finally,
the last section compares two extensions of label distribution protocols.

"Which the traditional IP forwarding in the Internet is based on

1
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The motivations of MPLS will not be discussed here. The reader who is interested
in the historical reasons and motivations of MPLS can refer to [26] or [10].

This chapter cites material from the book of Zheng Wang, [26], from the article
[10] and from [22].

1.1 Introduction

“In this section, three concepts will be described in order to let the
reader understand what is at stake with the MPLS technology. MPLS is
not a silver bullet to cure existing or forthcoming problems, but rather
an enabling technology which addresses some of these scaling issues. It
does this by replacing the standard destination-based hop-by-hop forward-
ing paradigm with a label-swapping forwarding paradigm. This has the
benefit of simplifying the packet-forwarding engine and enabling easy scal-
ing.

1.1.1 Protocol-Independent Forwarding

Routing and forwarding are tightly coupled in current IP architecture.
Any changes in routing architecture will affect the forwarding path. For
example, IP forwarding used to be based on three classes with network pre-
fixes 8, 16, and 24 bits long. The address exhaustion problem promoted
the development of Classless Inter Domain Routing (CIDR). However, im-
plementing CIDR requires a change in the forwarding algorithm of all IP
routers to use longest-prefix lookup. The forwarding algorithm is imple-
mented in hardware or fine-tuned software to ensure performance; making
changes to it can be expensive.

Label switching decouples forwarding from routing. An LSP may be
set up in a variety of ways, and once the LSP is established, packet for-
warding is always the same. Thus new routing architectures can be imple-
mented without any changes to the forwarding path. Take multicast as an
example: unicast packet forwarding is typically based on the destination ad-
dress. However, multicast forwarding may require a lookup based on both
the source address and the destination address. Modifying the unicast for-
warding engine to accommodate multicast requires substantial changes or
a completely separate forwarding engine for multicast. With label switch-
ing, a label for a multicast stream will be associated with the source and
destination addresses at the setup phase. The label lookup during multicast
forwarding remains unchanged for multicast.
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1.1.2 Forwarding granularity

Forwarding granularity refers to the level of aggregation in the deci-
sion making of routing protocols. For example, forwarding granularity in
current IP routing is destination based: all packets with the same network
number are grouped and treated the same way. Although destination-based
forwarding is highly scalable, different forwarding granularities are some-
times desirable. For example, an ISP may want specific customers to re-
ceive different forwarding treatments. Implementation of such a scheme
requires routers to know from which customer a packet originates; this may
in turn require packet filtering based on the source or destination address in
routers throughout the network.

1.1.3 Traffic Engineering

Label switching was initially driven by the need for seamless IP/ATM
integration and to simplify IP forwarding. However, rapidly changing tech-
nologies have made these considerations less important. Instead traffic en-
gineering has emerged as the key application of label switching.

Traffic engineering refers to the process of optimizing the utilization of
network resources through careful distribution of traffic across the network.
In today’s datagram routing, traffic engineering is difficult to achieve. IP
routing is destination based, and traffic tends to distribute unevenly across
the backbone. Although some links are heavily congested, others may see
very little traffic. The result of such unbalanced traffic distribution is that
resource utilization is typically poor. Some m of traffic engineering can be
done by manipulating the link metrics. For example, when a link is con-
gested, its cost metric can be increased in order to move traffic to other
links. However, it is typically a trial-and-error process and becomes im-
practical for large networks.

Most Internet backbones today use ATM or FR to interconnect IP routers.
The PVCs? in ATM and FR allow engineers to manually configure multi-
ple PVCs and adjust the routes to equalize the load of the traffic across the
network. This is an important functionality currently missing in IP rout-
ing. Label switching uses similar connection-oriented approaches and can
easily replace the PVC functionality in ATM and FR. With label switching,
all traffic flows between an ingress node and an egress node can be indi-
vidually identified and measured. LSPs can also be set up with explicitly
specified routes, or explicit routes. The entire path can be computed based
on sophisticated algorithms that optimize resource utilization.

ZPrivate Virtual Circuit
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Figure 1.1: Architecture of a normal IP router [22]

1.2 Routing versus Switching

To understand label switching, let us first look at how packets are for-
warded in IP routers (see Figure 1.1). The operation of an IP router can be
partitioned into two basic threads: a data path and a control path. The
data path is the “executive branch,” which performs the actual forward-
ing of packets from ingress ports to their appropriate egress ports. When
a packet arrives at the router, the data path uses a forwarding table and the
information contained in the packet header to determine where the packet
should be forwarded. The control path, on the other hand, is responsible
for making forwarding decisions. In the control path, routing protocols
exchange updates among routers and calculate the route to each network
prefix based on the routing metrics. The forwarding table consists of the
network prefix and the corresponding next-hop information produced by
the routing protocols.

In typical layer-3 IP routers, unicast forwarding is done by taking the
destination address of the incoming packet and performing a longest match
against the entries in the forwarding table. The lookup involves a longest
match on the source address and a fixed-length match with the destination
address.

In contrast to layer-3 routers, layer-2 switches such as ATM, FR, or Eth-
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ernet switches all use a short, fixed-length label for route lookup. Typically
a label does not encode any information from the packet headers and has
local significance; it can be viewed simply as an index in the forwarding
table. With this approach, the data path becomes very straightforward: it
involves a direct lookup to find the outgoing interface and the label for the
next hop. The simplification in the data path, however, comes at a price.
The control path has to set up the labels across the path that packets tra-
verse. This is done in ATM and FR by their own signaling protocols, which
set up the connections.

These two different approaches are often referred to as routing versus
switching. The main difference is that in the routing approach, the router
has to look at the fields of the packet header in the data path and match
the entries in the forwarding table; in the switching approach, the informa-
tion in the packet header is examined in the control path and the result is
associated with an index, which is used in the forwarding. Routing ver-
sus switching is once again an open debate; it is a continuation of the two
classic approaches to networking, datagram versus virtual circuit.

1.2.1 Example

MPLS uses the switching approach. In many aspects it is very similar
to ATM or FR. Let us look at the basic operations of MPLS. This example
explains the concept of switching, technical details concerning the architec-
ture and protocols are discussed later in this chapter.

Figure 1.2 shows a simple MPLS backbone network connecting multi-
ple customer sites. Two LSPs are established: one LSP connects customer
1 and customer 3 using labels 23 and 42 over path A — C' — E, and the
other connects customer 2 to customer 4 using labels 12, 96, and 24 through
path A — B — D — E. Suppose that customer 1 wants to send packets
to customer 3. Node A attaches label 23 to the packets from customer 1.
When node C' receives the labeled packets from node A it looks them up
in the label-forwarding table for the corresponding outgoing label, which is
42. Node C' then replaces label 23 with 42 and sends the packet to node E.
Node E realizes that it is the end of an LSP and removes the label, sending
the packet on to customer 3.

In a broad sense MPLS is a general framework for the switching ap-
proach (Figure 1.3). There are two components: a signaling protocol, which
can be IP, ATM, FR, and so on and sets up an LSP, and a data plane that
forwards packets based on the labels in the packets. This framework can
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1 Label = 23 Label = 42 3
_______ v ——
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Figure 1.2: Basic Operations of MPLS

be mapped to a specific set of protocols in many different ways. For ex-
ample, MPLS has been mapped to ATM by using IP control protocols to
manage ATM switches. However, an alternative proposal could be to use
ATM control protocols to manage label-switched routers.

In practice, however, the control plane in MPLS is usually IP based.
This is because IP control protocols, particularly routing protocols, have
proved to be more mature and scalable than possible alternatives. An IP-
based control plane in MPLS enables seamless integration between IP and
MPLS, avoiding many of the problems in running IP over ATM.

MPLS, as standardized by the IETF, has an IP-based control plane that
manages different types of label-based link layers. The MPLS signaling
protocols may be used to set up LSPs for IP routers, ATM switches, and
FR switches. MPLS has even been proposed to manage optical transport
networks that do not perform label-based forwarding at all. The data plane
may be ATM cells, FR frames, or IP packets with a shim header (described
in Section 1.3.4).

A unified control plane tightly integrated with the IP control protocols
that MPLS offers has considerable attraction. It brings simplicity to the
management of large IP networks and provides the necessary mechanisms
for performing traffic engineering and performance optimization, which the
current IP network lacks.

1.2.2 Comparison of Approaches

One of the key issues in label switching is the way the LSPs are estab-
lished. The many different approaches can be divided into two basic groups:
data driven and control driven. In a control-driven approach, the setup of
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Figure 1.3: Architecture of a label switch [22]

LSPs is initiated by control messages such as routing updates and RSVP?
messages. This can be implemented in two ways. One way is to piggyback
the label information in the control messages. For example, a label can be
carried in the routing updates to pass on the label that a neighbor should use.
This approach is simple but requires modifications to the existing protocols;
for example, extensions to current routing protocols are needed in order to
carry labels in routing updates. An alternative is to use a separate label dis-
tribution protocol for setting up LSPs. The label distribution protocol may
be driven by the control protocols.

Label setup is decoupled from the data path in the sense that all LSPs are
preestablished during the processing of control messages. Thus when the
data packets arrive, the LSPs are already established. The control-driven
approach allows flexible control over the way the LSPs are set up. For
example, it is possible to set up an LSP for all traffic that exits from a
specific egress router of a network or an explicitly specified route, as we
will discuss later in this chapter (Section 1.3.1).

The control-driven approach has its downside too. LSPs may be con-
fined to one control domain. For example, routing-based schemes, such as

3Resource Reservation Protocol
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Routing Switching
Conventional datagram Label switching
routing
Connectionless Connection-oriented
Packet-oriented Circuit-oriented
Virtual Circuit
Scalability MAXimise resource
commitments
Resistance to failures | MAXimise network
utilization
Shortest path Explicit routing

Table 1.1: Routing versus Switching [22]

tag and ARIS*, can establish LSPs only within a routing domain. Addi-
tional mechanisms such as label stacking are needed in order to cross the
control domain borders. For a large network, pre-establishing all LSPs may
lead to scalability issues; the number of LSPs that have to be set up can eas-
ily run into the tens of thousands. The messaging overheads during routing
changes may cause congestion and overloading in control processors.

The mechanisms used in a control-driven approach are inevitably spe-
cific to the control protocols on which the mechanisms are based. For exam-
ple, both tag switching and ARIS use route-based mechanisms for setting
up switched paths along the forwarding table produced by the routing pro-
tocol and use RSVP-based mechanisms for setting up switched paths for
RSVP flows. [...]

In the data-driven approach, the setup of an LSP is triggered by data
packets. The LSPs are set up on-the-fly while the data packets are arriving.
Obviously the first few packets must be processed at the IP level until the
corresponding LSP is set up. In the Ipsilon scheme?, for example, the setup
of a switched path starts when a switch detects that a flow is long lasting
(either by matching a well-known port number or by waiting for a threshold
number of packets to be forwarded). Thus the data-driven approach is less
deterministic since it depends on the traffic patterns in the network. When
there are many short-lived connections, the performance of label switch-

* Aggregate Route-based IP Switching
>Ipsilon Networks was a computer networking company which specialized in IP switching.
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ing tends to deteriorate since setting up LSPs for short-lived connections is
much more costly in terms of overhead.

The data-driven approach is also less flexible than the control-driven
approach. Note that in the data-driven approach, an LSP works like the
“cache” of a path: it somewhat passively reflects the path that packets tra-
verse. As such, it cannot be used to control the setup of the LSP. For exam-
ple, it would be difficult to implement explicit routes with the data-driven
approach.” [26]

1.3 Architecture

In this section we describe the basic concepts, architecture, and protocols in MPLS.

1.3.1 Key Concepts

“Figure 1.4 shows a simple MPLS network with four LSRs and three
LSPs(A—- B —-C,A— B — D,and C — B — D). The first and last
LSRs over an LSP are called the ingress and egress, respectively. For LSP 1
in Figure 1.4, LSR A is the ingress and LSR C' is the egress. The operation
of ingress and egress LSRs is different from that of an intermediate LSR
in many aspects. LSPs are directional. For any pair of LSRs, the LSR
that transmits packets with respect to the direction of data flow is said to
be upstream, whereas the LSR that receives packets is downstream. For
example, for LSP 1 in Figure 1.4, LSR A is upstream of LSR B, and LSR
B is downstream of LSR A.

Label

As described in section 1.2, a label is a short, fixed-length, locally sig-
nificant identifier that is used for label switching. A packet is called a la-
beled packet if a label has been encoded into the packet. The label may
be encoded into a packet in many ways. In some cases the label may be
mapped to some field in an existing data link or network layer protocol.
For example, when we use ATM switches as LSRs, the VCI/VPI® fields are
used as the MPLS label. However, this approach is not always feasible. A
simple MPLS encapsulation has been standardized that will carry the label
and some additional information. This adds another thin layer between the
data link layer and the IP layer specifically for MPLS processing.

5Virtual Channel Identifier/Virtual Path Identifier
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LSP 1

LSP 2 ) ! LSP 3

\ LSR D h
v v
Figure 1.4: A simple MPLS network

Because the label is the only identifier that is used for packet forward-
ing, an LSR must be able to associate the incoming label with an LSP. For
LSRs that are connected by point-to-point connections, the label needs to
be unique only to the point-to-point interface. In other words, the interface
can use the entire label space, and the same label value may be used over
different interfaces. When there are multiaccess interfaces, an LSR may
not be able to determine, solely based on the label, which neighbor sent the
packet. Thus the label must be allocated uniquely across all multiaccess
interfaces. In actual implementations label space may be unique across the
entire LSR. In this case label space is partitioned among all interfaces, so
the usable space for each interface is much smaller.

Each label is associated with a FEC?. An FEC defines a group of IP
packets that are forwarded over the same LSP with the same treatment. It
can be described as a set of classification rules that determine whether a
packet belongs to a particular FEC or not. Different types of FEC will be
discussed later in this section. It is important that the binding from a label
to an FEC be one to one. If multiple FECs are associated with a label, a
downstream LSR will not be able to distinguish packets of different FECs

"Forwarding Equivalency Classes. See section 1.3.2
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by simply looking at the label.

Hierarchical Label Stack

MPLS allows more than one label to be encoded in a packet. This is
referred to as a label stack since the labels are organized as a last-in, first-
out stack. A label stack is used to support nested tunnels. An LSP may have
another nested LSP between an LSR and can push in a new label on top of
the current label so that the packet will follow the tunnel pointed out by the
new label on the top of the stack. When the packet reaches the end of the
tunnel, the LSR at the end of the tunnel discards the top label and the one
below pops up. Label stacking is discussed in depth in Section 1.3.3.

Label-Switching Table

The label-switching table, also called an incoming label map (ILM),
maintains the mappings between an incoming label to the outgoing inter-
face and the outgoing label (Figure 1.5). Its functions are similar to those
of the packet-forwarding table in IP routers. The entry that the incoming la-
bel points to is called the next-hop label-forwarding entry (NHLFE). Each
incoming label typically points to one NHLFE. However, in the case of load
sharing, there may be multiple NHLFESs for an incoming label. The method
for splitting traffic in the case of multiple NHLFEs is not specified in the
standard.

Typically the NHLFE contains the next hop and the outgoing label for
that next hop. If an LSR is the ingress or egress of an LSP, the NHLFE also
specifies the actions for manipulating the label stack. NHLFEs may also
contain additional state information related to the LSP; for example, hop
count and data link encapsulation to use when transmitting the packet.

Next-hop

Incoming Label Outgoing Label
address

Per-label state

Figure 1.5: Label-forwarding table

LSRs use the label-switching table for forwarding labeled packets. When
a packet arrives, an LSR finds the corresponding NHLFE for the incoming
label by performing a lookup in the label-switching table. The LSR then
replaces the incoming label with the outgoing label and forwards the packet
to the interface specified in the corresponding NHLFE.
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Label Distribution Protocols

Before LSPs can be used, the label-switching table at each LSR must
be populated with the mappings from any incoming label to the outgoing
interface and the outgoing label. This process is called LSP setup or label
distribution.

A label distribution protocol is a set of procedures by which two LSRs
learn each other’s MPLS capabilities and exchange label-mapping informa-
tion. Label distribution protocols set up the state for LSPs in the network.
Since protocols with similar functions are often called signaling protocols
in ATM or circuit-based networks, the process of label distribution is some-
times called signaling, and label distribution protocols are called signaling
protocols for the MPLS networks.

The MPLS architecture does not assume that there is only a single label
distribution protocol. In fact, it specifically allows for multiple protocols for
use in different scenarios. The IETF MPLS Working Group has specified
LDP as a protocol for hop-by-hop label distribution based on IP routing in-
formation. For explicitly routed LSPs or LSPs that require QoS guarantees,
CR-LDP® and RSVP-TE? are two protocols that support such functions. We
will cover label distribution protocols in Section 1.4.

Label Assignment and Distribution

In MPLS the decision to bind a particular label to a particular FEC is al-
ways made by the downstream LSR with respect to the flow of the packets.
The downstream LSR then informs the upstream LSR of the binding. Thus
the data traffic and control traffic flow in opposite directions. For LSP 1 in
Figure 1.4, packets flow from LSR A to LSR B, whereas label assignment
between A and B is determined by LSR B and distributed to LSR A.

Although the upstream LSR can assign labels and inform the down-
stream LSR, downstream label distribution was chosen for good reasons.
Consider LSR A and B in Figure 1.4. Suppose that the label for LSP 1
between A and B is F. The upstream LSR A only has to put label F in a
packet on LSP 1 before it sends to LSR B. When LSR B receives the packet
from LSR A, it has to perform a lookup-based label F. Implementation is
much easier when the downstream LSR B, gets to choose the label so that
the labels are assigned only from specific ranges and the lookup table can
be made more compact. Label merging, which we will discuss next, also
requires downstream label distribution.

8Constraint-based Routing Label Distribution Protocol
Reservation Protocol for Traffic Engineering
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There are two different modes of downstream label distribution: down-
stream on demand and unsolicited downstream. With the downstream-
on-demand mode, an LSR explicitly requests a neighbor for a label binding
for a particular FEC. The unsolicited downstream mode, on the other hand,
allows an LSR to distribute label bindings to its neighbors that have not
explicitly requested them. Depending on the characteristics of interfaces,
actual implementations may provide only one of them or both. However,
both of these label distribution techniques may be used in the same network
at the same time. On any given label distribution adjacency, the upstream
LSR and the downstream LSR must agree on which mode is to be used.

Label Merging

In MPLS, two or more LSPs may be merged into one. Take LSP 2 and
LSP 3 in Figure 1.4 as an example again. Note that LSR B receives packets
from LSR A for LSP 2 and packets from LSR C for LSP 3. However, all
these packets go from LSR B to LSR D. Thus it is possible for LSR B to use
the same label between LSR B and LSR D for all packets from LSP 2 and
LSP 3. In essence the two LSPs are merged into one at LSR B and form a
label-switched tree. In general, when an LSR has bound multiple incoming
labels to a particular FEC, an LSR may have a single outgoing label to all
packets in the same FEC. Once the packets are forwarded with the same
outgoing label, the information that they arrived from different interfaces
and/or with different incoming labels is lost.

Label merging may substantially reduce the requirement on label space.
With label merging, the number of outgoing labels per FEC need only be
one; without label merging, the number could be very large. Let us look
at a practical example. Suppose that we would like to set up MPLS LSPs
between all edge nodes of a network and there are N edge nodes. The
worst-case label requirement without label merging, namely, the maximum
number of labels required on a single link in one direction, is approximately
N?/4. However, if we merge labels of packets destined to the same destina-
tion node, the worst-case number is merely V.

Not all LSRs may be able to support label merging. For example, LSRs
that are based on ATM cannot perform label merging because of cell inter-
leaving. In such cases different labels should be used even though an LSR
has packets from different interfaces with the same FEC. This issue will be
discussed in Section 1.3.4.
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Route Selection and Explicit Routing

During the label distribution process, an LSR needs to determine which
is the next hop for the LSP that it tries to establish. There are two basic
approaches to determine this: hop-by-hop routing and explicit routing.
The hop-by-hop approach relies on IP routing information to set up LSPs.
The MPLS control module will, at each hop, call the routing module to
get the next hop for a particular LSP. The routing module at each LSR
independently chooses the next hop based on IP routing or other routing
methods. The other approach is explicit routing. In this mode a single LSR,
generally the ingress or the egress of the LSP, specifies the entire route for
the LSP. The routes for the LSPs can be computed by routing algorithms
designed to achieve certain prespecified objectives. Such routing algorithms
are often referred to as constraint-based routing.

If the entire route for the LSP is specified, the LSP is “strictly” explicitly
routed. If only part of the route for an LSP is specified, the LSP is “loosely”
explicitly routed. This is very similar to the concept of strict source routing
and loose source routing in IP. Once a loosely explicitly routed LSP is es-
tablished, it may change or it can be pinned so that it always uses the same
route.

The explicitly routed LSP, or explicit route, has emerged as one of the
most important features in MPLS. It provides a mechanism for overrid-
ing the routes established by IP routing. This can be used to route traffic
around congested hot spots and optimize resource utilization across the net-
work. Without the explicit route mechanism, such features cannot be easily
implemented in current IP networks.

1.3.2 Forwarding Equivalency Classes

IP routers currently use a small number of fields in a packet header to
make forwarding decisions. In destination-based routing, only the network
number part of the destination address is used to select the next hop. All
packets that have the same destination network number follow the same
path and receive the same treatment. Thus the forwarding process can be
viewed as one that partitions packets into a finite number of sets. Within
the same set, all packets are treated the same way. We call a set of packets
that are treated identically in the forwarding process a FEC.

An FEC can be expressed as a set of classification rules that deter-
mine if a packet belongs to the FEC. For example, a set of packets with
the same destination network number is an FEC for destination-based IP
routing these packets receive identical treatment in the forwarding process.
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IP-based networks currently do not support many different types of
FECs since this would require classification of packets during packet pro-
cessing to match the packets to FECs. MPLS can easily support many dif-
ferent types of FECs. In MPLS the classification of packets is moved from
the data plane to the control plane. Once an LSP is set up, only the ingress
LSR needs to classify packets to FECs.

FEC is closely related to the concept of forwarding granularity dis-
cussed early in Section 1.1.2. The types of FECs supported by a network
in fact determine the forwarding granularity. For example, suppose that a
network supports a FEC that classifies packets based on their source and
destination addresses. This will result in a finer forwarding granularity than
current destination-based forwarding. A coarse forwarding granularity is
essential to scale to large networks, whereas a fine granularity allows max-
imal control over the forwarding of packets inside the network. MPLS al-
lows multiple types of granularity to coexist over the same forwarding path.
The common types of FECs that MPLS supports include :

o IP prefix. Packets that match an IP destination prefix in the routing
table are considered as one FEC. This is a direct mapping from the
routing table to the label-switching table, enabling MPLS to support
the destination-based forwarding in current IP routing. One advantage
of such FECs is that the label distribution may be closely coupled with
IP routing and driven by the events in routing protocols. It is also
feasible to piggyback on the routing protocols so that the message
overheads for label distribution are minimized.

e Egress router. In most backbone networks, packets come in from the
ingress node and go out from the egress node. A useful FEC includes
all the packets that go out on the same egress node. Such granularity is
very hard to support in a datagram model. With MPLS, however, one
can set up LSPs to a particular egress LSR based on the information
from the BGP'® Next Hop in a BGP update message, from the OSPF
Router ID in the OSPF advertisement, or directly via MPLS label dis-
tribution. This represents the coarsest granularity currently available
and can scale to large networks. The ability to identify streams be-
tween ingress and egress node pairs is also useful when it comes to
supporting traffic engineering within a backbone network'!.

o Application flow. This type of FEC results in the finest granularity
since each application flow is one FEC. It is the least scalable of all

19Border Gateway Protocol
"RFC 2702 [5] and RFC 3272 [4]
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granularity types. The advantage of application flow is, however, that
it provides end-to-end switching and allows maximum control of the
traffic flows in the network. Application flow is best suited for han-
dling special purposes.

There is a clear trade-off between scalability and controllability. The
ability of MPLS to support multiple FECs with different types of forward-
ing granularity gives a lot of flexibility in accommodating different require-
ments and combining different forwarding granularities in the same net-
work.

1.3.3 Hierarchy and Label Stacking

MPLS allows multiple labels to be encoded into a packet to form a
label stack. Label stacking is used to construct nested LSPs, similar to the
capability of IP-in-IP tunneling or loose source routing in IP routing. Such
nested LSPs can create a multilevel hierarchy where multiple LSPs can be
aggregated into one LSP tunnel.

NESTED LSP

Figure 1.6: Nested LSP

Consider the backbone network shown in Figure 1.6,which connects
many networks. Suppose that LSR A and B want to set up two LSPs to
LSR C and D, respectively. We can set up two LSPsas A — £ — F —
G—H—CandB — F — F — G — H — D. With label stacking, we
can first set up an LSP tunnel as ¥ — F' — G — H and LSPs from A to C
and B to D through this tunnel: A - ¥ —- H —-C,B—FE — H — D.
Note that only LSR £ and H, the ingress and egress of the LSP tunnel,
appear in the LSPs from A to C' and B to D.
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The benefit of label stacking is that we can aggregate multiple LSPs
into a single LSP tunnel. For example, thousands of LSPs may go through
E — F — G — H. Without the hierarchy, all backbone nodes (F, F,
G, H) have to be involved in the setup of these LSPs. By creating an LSP
tunnel, the information about these LSPs becomes invisible to the interior
nodes of the backbone (nodes F' and (7). The interior nodes of the backbone
are not affected by any changes of the LSPs going through the tunnel.

Let us look at processing when a packet travels from A to C' via the LSR
tunnel ¥ — F' — G — H. When the packet P travels from A to F, it has a
label stack of depth 1. Based on the incoming label, node E determines that
the packet must enter the tunnel. Node FE first replaces the incoming label
with a label that it has agreed on with H, the egress of the tunnel, and then
pushes a new label onto the label stack. This level-2 label is used for label
switching within the LSP tunnel. Nodes F' and G switch the packet using
only the level-2 label. When node H receives the packet, it realizes that it is
the end of the tunnel. So node H pops up the top-level label and switches
the packet with the level-1 label to C.

MPLS also supports a mode called penultimate hop popping, where
the top-level label may pop up at the penultimate LSR of the LSP rather
than the egress of the LSP. Note that in normal operation, the egress of an
LSP tunnel must perform two lookups. For example, node H must deter-
mine that it is the egress of the tunnel. It then pops the top-level label and
switches the packet to node C' with the next-level label.

When penultimate hop popping is used, the penultimate node GG looks
up the top-level label and decides that it is the penultimate node of the tunnel
and node H is the egress node of the LSP. The penultimate node then pops
up the top-level label and forwards to the egress node /. When H receives
the packet, the label used for the LSP tunnel is already gone. Thus node H
can simply forward the packet based on the current label to C'. Penultimate
hop popping can also be used when there is only a single label. In this
case the penultimate node removes the label header and sends an unlabeled
packet to the egress. To illustrate this, let us examine how node H processes
the packet from GG. When node H receives the packet from G, the packet
has only one label left in the stack. Node H performs a lookup with the
label and finds that it is the penultimate node of LSP from A to C' and the
next hop is C'. If node H operates in the penultimate hop-popping mode, it
removes the label header and sends the unlabeled packet to node C'. In this
example there are two labels in the stack, and both are popped out by the
penultimate nodes of their respective LSPs.

MPLS supports two types of peering for exchanging stack labels: ex-
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plicit and implicit. Explicit peering is similar to MPLS neighbor peering
for [Label Distribution Protocol] LDP; the only difference is that the peer-
ing is between remote LSRs. In explicit peering, LDP connections are set
up between remote LDP peers, exactly like the local LDP peers. This is
most useful when the number of remote LDP peers is small or the number
of higher-level label mappings is large.

Implicit peering does not have an LDP connection to a remote LDP
peer. Instead the stack labels are piggybacked onto the LDP messages when
the lower-level LSP is set up between the implicit-peering LSRs. The in-
termediate LDP peers of the lower-level LSP propagate the stack labels as
attributes of the lower-level labels. This way the ingress nodes of the lower-
level LSP receive the stack label from the egress LSR. The advantage of this
peering scheme is that it does not require the N-square peering mesh, as in
explicit peering especially when the number of remote peers is very large.
However, this requires that the intermediate LSR maintain the label stack
information even when it is not in use.

1.3.4 Label Stack Encoding

MPLS works over many different link-layer technologies. The exact en-
coding of an MPLS label stack depends on the type of link-layer technolo-
gies. For packet-based technologies such as Packet over SONET!? (POS)
and Ethernet, the MPLS header is inserted between the link-layer and the
IP layer and is used for label switching. [...] The MPLS frame consists of
the original IP packet and the MPLS header.

For ATM and FR, which are inherently label switching, the top entry
of the MPLS label stack is mapped to certain fields in the ATM cell header
or FR frame header. Thus label switching is actually performed with the
native header of the link-layer protocols. For example, when MPLS is used
over ATM, the top-level label may be mapped to the VPI/VCI space in the
cell header. The MPLS stack, however, is still carried in the payload. [...]
This section discuss the possible label values and their meaning.

Label Stack Header

The MPLS label stack header is also called the MPLS shim header. The
top of the label stack appears first in the packet, and the bottom appears last.
The network layer packet (e.g., IP packet) follows the last entry of the label
stack.

12Synchronous Optical Network
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The label stack header consists of a sequence of label stack entries.
Each entry is 32 bits long and has the format shown in Figure 1.7.

0 1 2 3

012345678901234567890123456789012
B T T i S St Se U A S
| LABEL | EXP |9 TTL |
B T T S s a T st a S S S S

Figure 1.7: Label stack entry format

Each label stack entry has the following fields:

e Label value. The label field is 20 bits long. When a labeled packet is
received, an LSR uses the label at the top of the stack to find the infor-
mation associated with the label, including the next hop to which the
packet is to be forwarded; the operation to be performed on the label
stack, such as label swapping or stack pop-up; and other information
such as network layer encapsulation and bandwidth allocation.

e Experimental use. The 3-bit field is reserved for experimental use.
One possible use is to set drop priorities for packets in a way similar
to that in Differentiated Services.

e Bottom of stack (S). The 5 bit is used to indicate the bottom of the
label stack. The bit is set to 1 for the last entry in the label stack and
to O for all other entries.

e Time to live (TTL). The 8-bit field is used to encode a time-to-live
value for detecting loops in LSPs.

Several reserved label values have special meanings:

e Label value 0. This value represents the IPv4 Explicit NULL label.
This label value is legal only when it is the sole label stack entry. It
indicates that the label stack must be popped and the resulting packet
should be forwarded based on the IPv4 header.

o Label value 1. This value is used to indicate Router Alert, similar
to the Router Alert option in IP packets. This Router Alert label can
appear anywhere in the stack except at the bottom. When a packet is
received with this label on the top of the stack, the packet should be
delivered to the local controller for processing. The forwarding of the
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packet is determined by the label beneath the Router Alert label. The
Router Alert label should be pushed in if the packet is to be forwarded
further. The Router Alert label can be used to indicate that a packet
contains control information that needs to be processed at each hop by
the local control processor.

e Label value 2. This value represents the IPv6 Explicit NULL label.
This label value is similar to label value O except that it is reserved for
IPv6.

e Label value 3. This label value represents the Implicit NULL label.
Label value 3 may be assigned and distributed but should never ap-
pear in the label stack. When an LSR would otherwise replace the
label at the top of the stack with a new label but the new label is the
Implicit NULL label, the LSR will pop the stack instead of doing the
replacement.

e Label values 4 to 15. These values are reserved.

Determining the Network Layer Protocol

The label stack header does not have a field that explicitly identifies the
network layer protocol for processing the packet at the bottom of the label
stack. This information should be associated with the label at the bottom
of the stack during the label distribution process. Thus when an LSR pops
the last label off a packet, it can determine which network layer protocol
should be used to process the packet.

With this approach labeled packets from multiple network layer proto-
cols can coexist. Under normal conditions only egress routers pop off the
last label and process the packet inside. However, when there are errors, for
example, undeliverable packets, it becomes necessary for an intermediate
LSR to generate error messages specifically to the network layer protocol.
Therefore the information about the network layer protocol should be asso-
ciated with the entire LSP rather than just the egress node.

1.3.5 Loop Detection

Loops in LSPs can cause severe damage to an MPLS network; traffic
in a loop remains in that loop for as long as the LSP exists. IP routing
protocols routinely form transient routing loops while routing convergence
is taking place. Since MPLS may use IP routing information for setting
up LSPs, loops could be formed as a result of IP routing inconsistency.
Configuration errors and software bugs may also create loops in LSPs.
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In IP routing, the damage from routing loops is mitigated by the use of
a TTL field within the packet header. This field decrements by 1 at each
forwarding hop. If the value decrements to zero, the packet is discarded.
The label stack header also has a TTL field for this purpose. When an IP
packet is labeled at the ingress node, the TTL field in the label stack header
is set to the TTL value of the IP header. When the last label is popped off
the stack, the TTL value of the label stack is copied back to the TTL field
of the IP header.

MPLS packets forwarded on ATM labels, however, have no such mech-
anism since the ATM header does not have a TTL field. The solution to this
problem requires loop detection during the setup phase of LSPs. [...]” [26]

The reader interested in a more detailed explanation, may be interested in [26].

1.4 Label Distribution Protocol

“The IETF MPLS working group initially considered only one label
distribution protocol (LDP). LDP was largely based on Tag Switching and
ARIS proposals, which were designed to support hop-by-hop routing. The
support for explicit routing became critical after it became apparent that
traffic engineering is a key application of MPLS. Two different proposals
were put forward. One proposal, “Constraint-based LSP Setup using LDP”,
adds a set of extensions to LDP to support explicit routing.

The other proposal, “Extensions to RSVP for LSP Tunnels,” extends
RSVP protocols to perform label distribution.

The two competing proposals have caused some heated debates in the
MPLS working group, but a consensus could not be reached to pick one
of them. In the end the working group decided that both proposals would
be standardized. The two protocols are often referred to as CR-LDP (con-
straint routing label distribution protocol) and RSVP-TE (RSVP with traffic
engineering extension). CR-LDP and RSVP-TE can also perform hop-by-
hop LSP setup.

In this section we first describe LDP and then compare the similarities
of and differences between CR-LDP and RSVP-TE.

141 LDP

LDP is the first label distribution protocol standardized by the MPLS work-
ing group. The protocol is designed to support hop-by-hop routing. Two
LSRs that use LDP to exchange label/FEC mapping information are known
as LDP peers.
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1. Discovery messages for announcing and maintaining the presence of
an LSR in a network

2. Session messages for establishing, maintaining, or terminating ses-
sions between LDP peers

3. Advertisement messages for creating, changing, or deleting label map-
pings for FECs

4. Notification messages for distributing advisory information and error
information

Discovery messages allow LSRs to indicate their presence in a network
by sending the Hello message periodically. This message is transmitted
as a UDP packet to the LDP port at the all-routers-on-this-subnet group
multicast address. Once a session is established between two peers, all
subsequent messages are exchanged over TCP.

Mapping FEC to LSP

When to request a label or advertise a label mapping to a peer is largely a lo-
cal decision made by an LSR. In general, the LSR requests a label mapping
from a neighboring LSR when it needs one and advertises a label mapping
to a neighboring LSR when it wants the neighbor to use a label.

LDP specifies the FEC that is mapped to an LSR Currently only two
types of FECs are defined: address prefix and host address. In order to
avoid loops, the following set of rules is used by an ingress LSR to map a
particular packet to a particular LSP:

1. If the destination address of the packet matches the host address FEC
of at one LSP, the packet is mapped to the LSP. If multiple LSPs have
the same matched FECs, the packet may be mapped to any one of
these LSPs.

2. If the destination of the packet matches the prefix FEC of one LSP, the
packet is mapped to that LSP. If there are multiple matched LSPs, the
packet is mapped to the one with the longest prefix match.

3. If a packet must traverse a particular egress router (e.g., from the BGP
routing information) and an LSP has an address prefix FEC element
that is an address of that router, the packet is mapped to that LSP.

LDP Identifiers

Since each interface of an LSR may use the entire label space, it is impor-
tant that an LSR identifies each label space within the LSR in any message
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exchanges with its peers. The LDP identifier is used to identify an LSR
label space. An LDP identifier is 6 bytes long. The first 4 bytes encode
an IP address assigned to the LSR, and the last two octets identify a spe-
cific label space within the LSR. The last two octets of LDP identifiers for
platform-wide label spaces are always set to zero.

LDP Discovery

LDP allows an LSR to automatically detect its LDP peers. There are two
mechanisms, one for discovering LSR neighbors that are directly connected
and the other for detecting LSR neighbors that are remotely connected. The
basic discovery mechanism sends out LDP Link Hello messages on each
interface. The messages are sent as UDP packets addressed to the LDP dis-
covery port with the all-routers-on-this-subnet group multicast address. To
detect LDP neighbors that are remotely connected, an LSR can send Tar-
geted Hello messages to a specific IP address at the LDP discovery port.
An LSR that receives Hello messages may choose to reply with Hello mes-
sages if it wants to establish a peer relationship. The exchanges of Hello
messages establish the adjacency.

LDP Session Management

The exchange of Hello messages between any two LSRs establishes the
communication channel between them and the label space that the LSRs
will use in their peer relationship. After that the two LSRs can establish
a session for the specified label space by setting up transport connections
and starting the initialization process. Initialization includes negotiation of
protocol version, label distribution method and timer values. [...] An LSR
can accept only initialization messages from LSRs that it has exchanged a
Hello message with.

LSRs maintain their peer and session relationship by sending Hello and
Keepalive messages periodically to each other. Timers are set when these
messages are received. An LSR considers the peer or the session down if
the corresponding timer expires before new messages are received.

Label Distribution and Management

LDP supports both downstream on demand and downstream unsolicited
label distribution. Both of these label distribution techniques may be used
in the same network at the same time. However, for any given LDP session,
only one should be used.
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LSPs may be set up independently between all LSRs along the path or
in order from egress to ingress. An LSR may support both types of control
as a configurable option. When using an independent approach, each LSR
may advertise label mappings to its neighbors at any time it desires. Note
that in this case an upstream label can be advertised before a downstream
label is received. When setting up LSP with the orderly approach, an LSR
may send a label mapping only for a FEC for which it has a label mapping
for the FEC next hop or for which the LSR is the egress. For each FEC for
which the LSR is not the egress and no mapping exists, the LSR must wait
until a label from a downstream LSR is received before mapping the FEC
and passing corresponding labels to upstream LSRs.

142 CR-LDP

CR-LDP is a label distribution protocol specifically designed to support
traffic engineering. It is largely based on the LDP specification with a set of
extensions for carrying explicit routes and resource reservations. The new
features introduced in CR-LDP include

Explicit routing

Resource reservation and classes

Route pinning

Path preemption

Handling failures
LSPID

Setup of Explicit Routes

In CR-LDP an explicit route is also referred to as a constraint-based route
or CR-LSP. CR-LDP supports both the strict and loose modes of explicit
routes. An explicit route is represented in a Label Request message as a
list of nodes or groups of nodes along the explicit route. Each CR-LSP is
identified by an LSP ID, a unique identifier within an MPLS network. An
LSP ID is composed of the ingress LSR Router ID and a locally unique CR-
LSP ID to that LSR. An LSP ID is used when the parameters of an existing
LSP need to be modified.

In the strict mode each hop of the explicit route is uniquely identified
by an IP address. In the loose mode there is more flexibility in the con-
struction of the route. A loose explicit route may contain some so-called
abstract nodes. An abstract node represents a set of nodes. The following
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types of abstract nodes are defined in CR-LDP: IPv4 prefix, IPv6 prefix,
autonomous system (AS) number, and LSP ID. With an abstract node the
exact path within the set of nodes represented by the abstract node is de-
termined locally rather than by the explicit route itself. For example, a
loose explicit path may specify a list of AS numbers that the explicit routes
must follow. The exact route within each AS is not specified and is decided
based on routing information and policies within the AS. This adds a differ-
ent level of abstraction and allows LSPs to be specified in such a way that
the effect of changes in individual links may be isolated within the AS.

The basic flow for an LSP setup with CR-LDP is shown in Figure 1.8.
The ingress node, LSR A, initiates the setup of LSP from LSR A to LSR C.
LSR A determines that the LSP should follow an explicit route from LSR B.
It then sends a Label Request message to LSR B with an explicit route (B,
C). LSR B receives the message and forwards it to LSR C after modifying
the explicit route. LSR C determines that it is the egress of the LSR It
sends a Label Mapping message backward to LSR B with allocated label
15 for the LSP. LSR B uses the LSP ID in the Label Mapping message to
match the original Label Request message. It then sends a Label Mapping
message to LSR A with label 12. LSR B also populates the label-switching
table with incoming label 12 pointing to outgoing label 15.

Label request (B,C) Label request (C)

X, X, X
Eabel mapping (L12):Labe1 mapping (L15)
LSR A LSR B LSR C

Figure 1.8: CR-LDP LSP setup. [22]

Resource Reservation and Class

CR-LDP allows sources to be reserved for explicit routes. The charac-
teristics of a path can be described in terms of peak data rate (PDR), com-
mitted data rate (CDR), peak burst size (PBS), committed burst size (CBS),
weight, and service granularity. The peak and committed rates describe the
bandwidth constraints of a path, and the service granularity specifies the
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granularity at which the data rates are calculated. The weight determines
the relative share of excess bandwidth about the committed rate. These pa-
rameters are very similar to those used for traffic policing in Differentiated
Services. An option also exists to indicate that the resource requirement can
be negotiable: an LSR may specify a smaller value for a particular parame-
ter if it cannot be satisfied with existing resources. Network resources can
also be classified into resource classes or colors so that NSPs'® can specify
which class an explicit route must draw resources from.

Path Preemption and Priorities

If an LSP requires a certain resource reservation and sufficient resources
are not available, the LSP may preempt existing LSPs. Two parameters
are associated with an LSP for this purpose: setup priority and holding
priority. The setup priority and holding priority reflect the preference for
adding a new LSP and holding an existing LSP. A new LSP can preempt an
existing LSP if the setup priority of the new LSP is higher than the holding
priority of the existing LSP. The setup and holding priority values range
from O to 7, where O is the priority assigned to the most important path, or
the highest priority.

Path Reoptimization and Route Pinning

For a loose explicit route the exact route within an abstract node is not
specified. Thus the segment of the route with an abstract node may adapt
when traffic patterns change. CR-LDP can reoptimize an LSP, and an LSP
ID can be used to avoid double booking during optimization. Under some
circumstances route changes may not be desirable. CR-LDP has a route
pinning option. When the route pinning option is used, an LSP cannot
change its route once it is set up.

143 RSVP-TE

As we know, RSVP was initially designed as a protocol for setting up re-
source reservation in [P networks. The RSVP-TE protocol extends the orig-
inal RSVP protocol to perform label distribution and support explicit rout-
ing. The new features added to the original RSVP include :

e Label distribution

e Explicit routing

3Network Service Provider
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e Bandwidth reservation for LSPs

e Rerouting of LSPs after failures

e Tracking of the actual route of an LSP
e The concept of nodal abstraction

e Preemption options

RSVP-TE introduces five new objects, defined in this section (Table

1.2).
Table 1.2: New Objects in RSVP-TE
| Object name | Applicable RSVP messages |
LABEL_REQUEST PATH
LABEL RESV
EXPLICIT_ROUTE PATH
RECORD_ROUTE PATH, RESV
SESSION_ATTRIBUTE | PATH
LSP Tunnel

Although the original RSVP protocol was designed to set up reserved
paths across IP networks, there is an important difference between a re-
served path set up by the original RSVP protocol and an LSP. In original
RSVP areserved path is always associated with a particular destination and
transport-layer protocol, and the intermediate nodes forward packets based
on the IP header. In contrast, with an LSP set up by RSVP-TE, the ingress
node of the LSP can determine which packets can be sent over the LSP and
the packets are opaque to the intermediate nodes along the LSP. To reflect
this difference, an LSP in the RSVP-TE specification is referred to as an
LSP tunnel.

Figure 1.9 shows the flow in setting up an explicit route with RSVP-
TE. To create an LSP tunnel, the ingress node LSR A first creates a PATH
message with a session type LSP-TUNNEL. The PATH message includes a
LABEL _REQUEST object, which indicates that a label binding for this path
is requested and also provides an indication of the network layer protocol
that is to be carried over this path.
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LSRA  patHec) LSRB  pathc) . LSR

OC E— OC E— 5

RESV(12) RESV/(15)

Figure 1.9: RSVP-TE explicit LSP setup. [22]

To set up an explicit route, LSR A needs to specify the route in an
EXPLICIT_ROUTE object and adds it to the PATH message. LSR A may
add a RECORD_ROUTE object to the PATH message so that the actual
route is recorded and returns to the sender. The RECORD_ROUTE object
may also be used to request notification from the network about changes of
the actual route or to detect loops in the route.

Additional control information such as preemption, priority, local pro-
tection, and diagnostics may be included by adding a SESSION_ATTRIBUTE
object to the PATH message.

Once the PATH message is constructed, LSR A sends it to the next hop
as indicated by the EXPLICIT_ROUTE object. If no EXPLICIT_ ROUTE
object is present, the next hop is provided by the hop-by-hop routing.

Intermediate node LSR B modifies the EXPLICIT_ROUTE object and
forwards to the egress node LSR C. LSR C allocates a new label, includes it
in a LABEL object, and inserts into the RESV message. LSR C then sends
the RESV message backward to the sender, following the path state created
by the PATH message, in reverse order.

When the intermediate node LSR B receives an RESV message, it re-
trieves the label in the LABEL object and uses it as the outgoing label for
the LSP. It also allocates a new label and places that label in the correspond-
ing LABEL object of the RESV message, which it sends upstream to the
previous hop (PHOP). LSR B then adds this new pair of labels to the la-
bel switching table. When the RESV message propagates upstream to the
ingress node LSR A, an LSP is established.

Reservation Styles

For each RSVP session, the egress node has to select a reservation style.
The original RSVP protocol has three styles: fixed filter (FF), wild filter
(WF), and shared explicit (SE). In RSVP-TE only FF and SE reservation
styles are supported.

The FF reservation style creates a distinct reservation for traffic from
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each sender that is not shared by other senders. With RSVP-TE this will
create a point-to-point LSP for each ingress and egress pair. Most LSPs are
expected to be set up using this filter.

The [FF] style allows a receiver to specify explicitly the senders to be
included in a reservation. There is a single reservation on a link for all
the senders listed. This in essence creates a multi-point-to-point tree to the
egress. With RSVP-TE, because each sender is explicitly listed in the RESV
message, different labels may be assigned to different senders, thereby cre-
ating separate LSPs. The [SE] style is particularly useful for backup LSPs,
which are used only if their corresponding active LSPs have failed. Thus
these backup LSPs can share bandwidth among themselves and with active
LSPs during normal operation.

Rerouting LSP Tunnels

Under many circumstances it may be desirable to reroute existing LSPs. For
example, an LSP tunnel may be rerouted in order to optimize the resource
utilization in the network or to restore connectivity after network failures.

RSVP-TE uses a technique called *'make before break’ to minimize the
disruption of traffic flows during such rerouting. To reroute an existing LSP
tunnel, a replacement LSP tunnel is first set up, then the traffic switches
over, and finally the old LSP tunnel tears down.

During the transition period the old and new LSP tunnels may coexist
and so compete with each other for resources on network segments that they
have in common. This may lead to a racing condition where the new LSP
tunnel cannot be established because the old LSP tunnel has not released
resources, yet the old LSP tunnel cannot release the resources before the
new LSP tunnel is established. To resolve this problem, it is necessary to
make sure that the resource reservation is not counted twice for both the
old and new LSP tunnels. This can be achieved in RSVP-TE by using SE
reservation style. The basic idea is that the old and new LSP tunnels share
resources along links that they have in common.

To make this scheme work, the LSP_TUNNEL object is used to narrow
the scope of the RSVP session to the particular tunnel in question. The com-
bination of the tunnel egress IP address, a tunnel ID, and the tunnel ingress
IP address is used as a unique identifier for an LSP tunnel. During the
reroute operation the tunnel ingress needs to appear as two different senders
to the RSVP session. A new LSP ID is used in the SENDER_TEMPLATE
and FILTER _SPEC objects for the new LSP tunnel.

The ingress node of the LSP tunnel initiates rerouting by sending a
new PATH message using the original SESSION object with a new SEN-
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DER_TEMPLATE, a new EXPLICIT_ROUTE object, and a new LSP ID.
This new PATH message is treated as a conventional new LSP tunnel setup.
Howeyver, on links that are common to the old and new LSP tunnels, the SE
reservation style ensures that the old and new tunnel share the same reser-
vation. Once the ingress receives an RESV message for the new LSP, it can
switch traffic to the new LSP tunnel and tear down the old LSP tunnel.

1.4.4 Comparison

As we mentioned at the beginning of Section 1.4, the fact that we have two
competing label distribution protocols was more a result of the compromise
by the MPLS working group than a conscious technical decision. It is not
clear whether the two protocols will both be supported in the long run or
whether one of them will emerge as the winner in the marketplace. Al-
though CR-LDP and RSVP-TE share many similarities (Table 4.2), there
are also some key differences. We will discuss these differences and their
implications in the rest of this section.

Transport Protocol

CR-LDP and RSVP-TE are based on different transport mechanisms for
communicating between peers. CR-LDP uses TCP and UDP, whereas RSVP-
TE uses raw IP and requires Router Alert option support. This difference
has a number of implications that must be considered in selecting one or
the other:

e Although most operating systems support full TCP/IP stack, TCP may
not be available in some embedded systems. [Alternatively] on some
platforms raw IP and the Router Alter option may not be supported.

e Since raw IP does not provide any reliable transport, RSVP-TE must
implement mechanisms for detecting and retranslating lost packets
within its own protocol. CR-LDP can assume orderly and reliable
delivery of packets provided by TCP.

e CR-LDP may use the standard security mechanisms available to TCP/IP
such as IPSEC or TCP MDS5 authentication. Because the messages in
RSVP-TE are addressed to the egress of the LSP rather than the next-
hop intermediate node, RSVP-TE must use its own security mecha-
nisms.

e The need for high availability often necessitates the implementation
of redundant network controllers. When the active controller fails,
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the backup one can take over and continue the operations. Because
RSVP-TE is running over connectionless raw IP and handles packet
losses within its protocol, it is easier to implement a smooth failover to
the backup system. For TCP, a smooth failover is not impossible, but it
is known to be a difficult problem because of the connection-oriented

nature of and complex internal state keeping in this system.

Table 1.3: Comparison of CR-LDP and RSVP-TE

Feature | CR-LDP | RSVP-TE
Transport TCP and UDP Raw IP
Security IPSEC RSVP Authentication
Multipoint to point v 4

LSP merging v 4

LSP state Hard Soft

LSP refresh Not needed Periodic, hop by hop
Redundancy Hard Easy
Rerouting 4 v

Explicit Routing Strict and loose Strict and loose
Route pinning v By recording path
LSP preemption Priority based Priority based
LSP protection v 4

Shared reservation x v

Traffic control Forward path Reverse path
Policy control Implicit Explicit
Layer-3 protocol ID x v

State Keeping

In network protocol design, the issue of soft state versus hard state often
causes much debate. With the soft-state approach, each state has an asso-
ciated time-out value. Once the time-out period expires, the state is auto-
matically deleted. To keep the state alive, it is necessary to refresh it before
it expires. In contrast, in a hard-state system, once a state is installed, it
remains there until it is explicitly removed. RSVP-TE is based on the soft-
state approach. Thus it is necessary for RSVP-TE to periodically refresh
the state for each LSP in order to keep it alive. In a large network with a
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substantial number of LSPs, the refreshing may pose significant messag-
ing and processing overheads. Because of this, concerns have arisen about
the scalability of RSVP-TE to large networks. To address this issue, the
IETF has adopted a proposal to add the refresh reduction extensions to the
RSVP-TE protocols.

CR-LDP uses the hard-state approach, so it has fewer messaging and
CPU overheads compared with RSVP-TE. However, as a hard-state-based
system, all error scenarios must be examined and handled properly. Since
any state will remain in the system in a hard-state system unless explicitly
removed, some LSPs may be left in limbo as a result of unforeseeable errors
in the system. In a soft-state system this will not happen because the state
for the LSPs is removed after the time-out period expires.

Summary

MPLS uses a technique called label switching. With label switching, pack-
ets are forwarded based on a short, fixed-length label. The connection-
oriented nature of label switching offers IP-based networks a number of
important capabilities that are currently unavailable. MPLS has been used
to ease the integration of IP over ATM and simplify packet forwarding, and
its support for explicit routing provides a critical mechanism for implement-
ing traffic engineering in Internet backbones.

Before packets can be transmitted in an MPLS network, an LSP must be
set up. There are two basic approaches: control driven and data driven. In
the control-driven approach the setup of LSPs is initiated by control mes-
sages such as routing updates. In the data-driven approach the LSPs are
triggered by data packets and set up on the fly while the data packets are ar-
riving. The MPLS standards use the control-driven approach, in which the
LSPs are set up by label distribution protocols that are driven by IP routing
or explicit routes from the network management systems.

MPLS supports variable forwarding granularity through multiple types
of FECs. Edge LSRs have the responsibility for mapping packets onto
FECs. MPLS allows multiple labels to be encoded into a packet to form
a label stack. An MPLS label stack consists of 32-bit entries, and each en-
try contains a 20-bit field for the label value. The MPLS label stack header
is inserted between the IP packet and the link-layer header. In ATM and FR
the top-level label is mapped to fields in the ATM cell header or FR header.

Three label distribution protocols, LDP, CR-LDP, and RSVP-TE, have
been standardized. LDP is primarily used for supporting hop-by-hop” [26]
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CHAPTER 2

VIRTUALS TESTBEDS

vocabulary and theoretical concepts are explained without getting into detailed

technical issue or code example. Then, a concrete implementation of a virtual
machine is presented (Netkit) and used to set up MPLS networks. Finally, the virtual
testbed upon which dynamic configuration of LSP will be analyzed in the following
chapters, is described at the end of this chapter.

T his chapter intends to outline the concepts of a virtual testbed. At the beginning,

2.1 Introduction

2.1.1 Definitions

In order to explain the basics of a virtual testbed, let us start by defining a few concepts:

“A testbed is a platform for experimentation. Testbeds allow to test in a transparent
and replicable way, software and/or specific network cases. The platform is usually
composed by few interconnected computers running the same operating system and the
same programs. These computers are used to simulate a specific behavior.” [27]

A virtual testbed is a software that emulate the behavior of a real testbed. It runs
on a single computer, called the host, and the instance of the running software are called
the virtual machines.

“A sandbox is a security mechanism for safely running programs. It is often used
to execute untested code, or programs from unverified third-parties, suppliers and un-
trusted users.” [27]

These definitions are not rigorously complete. The reader must regard them as an
explanation of a concept in order to understand the context in which they are used for.
For instance, a virtual testbed is used to emulate a real testbed. A sandbox is used to
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simulate the execution of a program as if it were on the real system.

At the end of this chapter, the real testbed upon which tests were done will be pre-
sented. This testbed is emulated with a tool described in Section 2.2, hence enabling the

investigation of dynamic configuration of LSPs in Chapter 3 and 4

2.2 Netkit

The beginning of this section comes from the article describing Netkit [18]. This article
is cited several times in this chapter because it is really resourceful and explain with the

most rigorous way the features and tools used in Netkit.

“An emulator is a software or hardware environment that is capable of
closely reproducing the functionalities of a real world system. Emulators,
especially if implemented in software, are very useful for performing exper-
iments that might compromise the operation of the target system or simply
when the real system itself is not available. This is true in particular for
computer networks, where configurations of network devices often need
to be tested before being deployed. In [Section 2.2], the network emulation
systems will be described as well as Netkit, a lightweight emulator based on
User-Mode Linux. Besides being an effective instrument to support teach-
ing of computer networks, Netkit has also proven itself to be helpful in
testing the configuration of large scale real world networks. Netkit pro-
vides tools for a straightforward setup of complex network scenarios that
can be easily distributed and comes with a set of ready to use experiences
that permit to immediately experiment with specific case studies. Netkit
also fully installs and runs in user space and provides users with a famil-
iar environment consisting of a Debian based Linux box and well known
routing software and networking tools.

2.2.1 Introduction

34

Testing configurations is a common need both for network administra-
tors and for computer scientists interested in networking. The former can
take advantage of a testing phase for checking that a particular configura-
tion works as expected before deploying it, while the latter can exploit test
results in order to validate theoretical models with practical experimenta-
tion. Ideally, testing should take place under the very same conditions in
which the configuration is to be eventually deployed. However, this often
means injecting artificially generated, potentially harmful traffic into a live
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network, which may cause damage to it. An effective alternative to live test-
ing consists in implementing the network configuration of interest inside a
safe, isolated software environment which closely reproduces the real target
setting. Such environments are usually available in two flavours:

e Simulation environments allow the user to predict the outcome of
running a set of network devices on a complex network by using an
internal model that is specific to the simulator. With the network as an
input and the outcome (possibly a network state) as an output, simu-
lators do not necessarily reproduce the same sequence of events that
would take place in the real system, but rather apply an internal set of
transformation routines that brings the network to a final state that is
as close as possible to the one the real system would evolve to. As this
approach can be optimized in performance, the simulated network can
typically scale well in size. The drawback is that the simulated devices
may have limited functionalities and their behaviour may not closely
resemble that of real world devices.

¢ Emulation environments aim at closely reproducing the features and
behaviour of real world devices. For this reason, they often consist
of a software or hardware platform that allows to run the same pieces
of software that would be used on real devices. Differently from sim-
ulation systems, in an emulator the network being tested undergoes
the same packet exchanges and state changes that would occur in real
world. The real advantage of the emulation approach comes out when
the emulator itself is a software piece, as this allows much higher flex-
ibility in carrying out network tests.

Since emulation makes use of real routing software, every aspect of the
network can be influenced and monitored like it could be in a real network.
While this ensures very high accuracy, the computational resources needed
to run an emulated device are typically higher than those available in the
device itself. Hence, the performance of an emulated device is, in general,
lower than that of the real one, and this often poses limits on the scalability
of the size of the emulated network.” ' [18]

To make a clear distinction between an emulated device and the real machine it is
running on, in the following we label Netkit virtual machines and the software they run

as guest, and we refer to the real machine and the software it runs as host.

'More information about Netkit and emulation environment can be found in [18]
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2.2.2 Usability and Readiness

This section describes how to set up and use a virtual testbed with Netkit. Within the
Netkit environment each network device is implemented by a virtual machine, and in-
terconnection links are emulated by using virtual collision domains which can be seen
as virtual hubs.

In other words, each virtual machine that is connected to a collision domain will
receive all the packets sent on that collision domain. This note is important because it
explains a part of the results in this chapter. For example, on Figure 2.5 page 48, the
network domain 192.168.80.0/24 and 192.168.50.0/24 are two collision domains.

Each virtual machine can be configured to have an arbitrary number of virtual net-
work interfaces. Virtual machines can also be configured to have no interface at all,
in which case they can serve as standalone emulated hosts. However, this is not the
application Netkit has been thought for. Netkit is not a host emulator: it is a network
emulator.

Netkit is really a great tool when it comes to save time while building a virtual
testbed. Three things are needed to make Netkit works :

1. Scripts developed to configure, launch and halt virtual machines;
2. A filesystem image;

3. A Linux kernel compiled for the User-Mode Linux architecture.

Scripts

Netkit virtual machines are based on the User-Mode Linux (UML) kernel. Starting
a virtual machine means starting a UML instance, which often requires dealing with
somewhat complex command line arguments. For this reason Netkit supports straight-
forward configuration and management of virtual machines by means of an intuitive
interface consisting of several scripts.

Virtual machines are UML instances that directly run on the host kernel and are
managed by a set of commands. Netkit provides two alternative interfaces to start and
configure virtual machines.

1. A set of v-prefixed commands: vclean, vconfig, vcrash, vhalt, vlist, vstart, which
allow to start and manage single virtual machines while providing fine grained
control on their configuration;

2. a set of l-prefixed commands (Iclean, Icrash, lhalt, linfo, lrestart, Istart, ltest),
which ease setting up preconfigured network laboratories consisting of several
virtual machines.
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Before going any further, the attention of the reader should be drawn to the fact that
there exists two different ways to preconfigure a lab or a testbed. On the one hand, the
l-prefixed commands are used, and on the other hand a script can be generated by pro-
viding an XML Schema of the testbed to the NetML parser.

XML language can be used to describe networks and hence be used to specify sce-
narios. The Netkit group also developed NetML, a parser that takes into input the XML
schema of the network and returns a script allowing to start the emulated network thanks
to Netkit. As both tools were developed by the same group, there is strong integration
between them. NetML also contains a set of tools which transform vendor indepen-
dent description of a network into configuration statements for specific routing software
(Cisco, Juniper, Zebra).

Network descriptions are written according to the NetML grammar (i.e., an XML-
Schema instance). XSLT (eXtensible Stylesheet Language Transformations) is then
used to generate the configuration files for different types of routers and firewalls.

With huge and complex networks, it is better to use enterprise-oriented methods to
describe networks as NDL.?> NDL (Network Description Language) is a language based
on the Resource Description Framework* from W3 and a bunch of tools making net-
work descriptions easier. As a matter of fact, NetML is efficient for describing from the
tiniest to average size networks but for large networks NDL is more appropriate. For
instance, NDL takes into account the geographical location of network nodes. These
methods are way too strong for the virtual testbed that is going to be used. NetML is
enough to suit our requirements.

In this case, only the v-prefixed commands are used in the script generated by
NetML. The reason is that the 1-prefixed commands are well suited when the goal is
to set up complex networks but are difficult to adapt to specific needs. For instance, the
script generated by NetML was modified in order to set up LSPs automatically. This
would be very difficult and time consuming to implement with the I-prefixed commands.
Writing the script that launches and configures all the virtuals machines was the most
time consuming part anyway.

Filesystem

Let us move to a description of the Netkit filesystem. It will appear that it is not suited
to our needs, which motivated a few changes. Then, the answer to the question “why is

2http://www.dia.uniroma3.it/ compunet/netml
3http:/fwww.science.uva.nl/research/sne/ndl
*http:/fwww.w3.0rg/RDF
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it useful to modify the Netkit filesystem?” will be exposed.

“Each virtual machine in Netkit has its own filesystem. Hence, if [the
user creates, alters or deletes] a file inside a virtual machine, the change will
only involve that machine. File systems are preserved across reboots of the
virtual machines, so that [the user can save his/her]| configuration data and
retrieve[s] it when the machine is later restarted. When a virtual machine
is started for the first time its filesystem is not empty, but it contains boot
scripts, basic configuration settings and several tools and utilities. That is,
file systems are first built on the basis of a common “model”.

A virtual machine filesystem is nothing but a special file on the host ma-
chine. However, maintaining a full copy of the filesystem for each virtual
machine would be too space consuming. [For instance,] a virtual machine
filesystem is hundreds of megabytes large. For this reason, there is only a
single “master” filesystem, which is called model (or backing) filesystem.

[...]

[Upon first boot, every virtual machine sees the contents of the model
filesystem.] When a virtual machine writes [data] to its own filesystem, a
special file called COW file is created. This file contains the differences
between the model filesystem and the current filesystem status. The strat-
egy of “just saving the changes” is also called “Copy On Write” strategy
(COW) [...]. That is, whenever data has to be written to the model filesys-
tem, a copy of the affected portion is made and the changes are saved to an
external file (the COW file). This saves a great amount of space. COW files
are automatically created when a virtual machine is first started. [...]

COW files and model files cannot be mixed. That is, if a COW file for a
virtual machine has been created on the basis of a certain model filesystem,
then every virtual machine using that COW file must use the same model
filesystem as well. In other words, COW files and model files cannot be
arbitrarily coupled. [If the model filesystem is changed, the COW files are
useless.]”[17]

In order to work properly, virtual machines require a filesystem containing, at least,
a Linux installation. With Netkit, a full-fledged Debian distribution tuned according to
specific UML use is actually installed on the filesystem. Other relevant softwares are
installed such as routing daemons, servers, firewall, diagnostic tools, among other kinds
of programs. When a virtual machine system is configured, it can run as a real network
device (e.g. router).
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A virtual machine can act as a network device if the guest operating system (i.e.
Linux) is configured accordingly. The Netkit filesystem is preconfigured and works
perfectly. However:

1. It is a bit old, and starts to become obsolete. The versions of the installed soft-
ware are sometimes years behind the most up-to-date version of that very same
program.

2. If the host system is not the same as the one installed on the virtual machine, i.e.
the libraries installed are not the same, it might be worth to have a C compiler
and the corresponding libraries installed in order to update the system. But the
Netkit filesystem does not contain a C compiler. It must therefore be installed
which might require more space than available on the genuine Netkit filesystem.

3. Compiling programs is one thing, installing them is another one. In order to com-
pile and install programs, few tools such as make, autoconf, are needed. These
programs must be installed too. Fortunately, Netkit is debian-based and these
packages can be installed as binary packages (which do not require a compiler).

The modernity (up-to-date) is not the only matter. The addition of packages requires
much more space than available. In order to enlarge the Netkit filesystem, a complete
method was provided by the author of this thesis on the Netkit developing community®.
The complete method is described in the Appendix B. It should soon appear in the man
page of the next Netkit release.

After enlarging the filesystem, updating the packages, installing the C compiler, the
tools and the required libraries to compile the programs from mpls-linux, the necessary
programs to use MPLS and set up LSPs must be compiled and installed. These pro-
grams and the way to use them will be discussed in Chapter 3 and Chapter 4.

Finally, the most difficult and complex task was to build a filesystem that include all
the necessary tools to activate the MPLS features (i.e. iproute2, iptables and Quagga).

UML Kernel

Virtual machines make use of a variant of the standard Linux kernel which is compiled
to be run as a userspace process. This variant is known as User Mode Linux kernel.
More information about UML can be found at the User-Mode Linux Kernel Page®.

Shttp://list.dia.uniroma3.it/mailman/private/netkit.users/2006-December/000220. html
Shttp://user-mode-linux.sourceforge.net
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“In an emulation environment virtual machines have nearly the same
characteristics of a real host, including their own kernel. Netkit exploits
User-Mode Linux as kernel for the virtual machines. User-Mode Linux
is widely used by kernel hackers, who are doing filesystem and memory
management development and debugging, as well as by hardware devel-
opers, who are prototyping new types of device in software. It also meets
the interests of the security community, as it fits well the creation of jails
and honeypots, and is often employed by the hosting industry to run virtual
servers. The fundamentals of UML are illustrated by its designer Jeff Dike
in his book [9].

User-Mode Linux is a port of the standard Linux kernel which is de-
signed to run as a userspace process. Being a kernel in itself, UML comes
with its own kernel subsystems, including scheduler, memory manager,
filesystem, network, and devices. In this sense an instance of UML pro-
vides a virtualized environment in which everything (processes, memory,
filesystem, etc.) is controlled by itself instead of the host kernel.

In practice, UML appears as a userspace process on the hosting ma-
chine and acts as a kernel for its own processes. Actually, a kernel for a
Netkit virtual machine is nothing but a special version of a kernel that has
been compiled as a User-Mode Linux kernel. An UML kernel takes care
of mapping system calls generated inside the virtual machine to the proper
functions of the real host kernel.” [18]

Every virtual machine can be started with its own UML kernel. Figure 2.1 shows
the interaction between User-Mode Linux and the other components of the host system.
In principle, nothing forces to use particular combinations of kernels and file systems.
The current version of Netkit also provides support for loadable kernel modules. Mod-
ules are kernel components that can be attached or removed on the fly from a running
kernel. This is very useful because all MPLS features from the mpls-linux project can
be compiled as a module. This is also a cause of many mistakes,as the tester sometimes
forgets to load the MPLS module.

It is also possible to build a customized kernel for the virtual machines. It is not
needed to have the genuine Netkit kernel which starts to get old. Furthermore, the
Netkit kernel is not MPLS compliant, as it does not contain the necessary modules to
create and use LSPs. The kernel from Netkit version 2.2 includes a 2.6.11.7 (UML)
kernel.

By the time of writing this thesis, the latest stable kernel version is 2.6.21.1. Note that
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Figure 2.1: Relationships between User-Mode Linux and the other components of the
host system. Boxes represent kernel entities (subsystems, interfaces, or processes).
Dashed boxes represent virtualized resources, while gray filled ones [named UML ker-
nel] are instantiations of kernel entities (processes or files).[18]

UML is included in the standard Linux kernel but not necessarily evolves at the same
cycles.

Figure 2.2 shows the representation of an “UML-MPLS linux” kernel with the fol-
lowing legend.

— = = = Symbolic representation of the Linux kernel.
— e S€CtiON Of the Linux kernel.
Features of the Linux kernel.

Besides the MPLS modules, the rest comes from a vanilla kernel’. Note that some
drivers might be loaded as a module but this will not be debated here. Concerning
MPLS-patched kernel, it can be turned into a UML kernel® and its version is 2.6.20.
Compiling a UML kernel is much more easier than compiling a Linux kernel for a real
computer. With the UML kernel, there is no need to specify the device drivers or to
know which chipset the motherboard is using. It is just needed to specify few options
for UML, for MPLS and the network tools (iptables, iproute).

"These kernels are released by Linus Torvalds. See http://www.kernel.org
8See this url for more information about compiling UML:
http://user-mode-linux.sourceforge.net/UserModeLinux-HOWTO-2.html
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Figure 2.2: UML-MPLS Linux Kernel.

2.2.3 The Zebra Routing Software Suite

This section is devoted to the Zebra routing software.

“In order to experiment with routing protocols, Netkit comes with an
installed release of the Zebra routing software. Zebra is a suite of daemons
that provide support for several routing protocols, including RIP, OSPF, and
BGP. Routing protocols take care of spreading information about available
destinations on a network in order to automatically update the routing tables
of each device.

[Figure 2.3] describes an abstraction of the architecture of Zebra® and
of the way in which it injects information in the kernel routing table. Each

http:/fwww.zebra.org
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Figure 2.3: An abstraction of the architecture of the Zebra routing software. This image
is a modified version of the original one from [18] to include the Idpd daemon.

Zebra routing daemon manages a specific routing protocol, has its own con-
figuration file, and writes to its own log. They listen on different TCP ports,
so that messages of a particular routing protocol can be sent to the appro-
priate daemon.

For each routing protocol, a Routing Information Base (RIB) and a For-
warding Information Base (FIB) are maintained. The RIB is the set of all
destinations known to that protocol, together with the path to reach them
and some additional reachability information. The FIB contains, for each
possible destination on the network, only the alternative that is considered
the best one to reach it. Zebra in itself is a routing daemon: it receives
information from the FIBs of the other daemons and, for each destination,
selects the best alternative among those made available by different routing
protocols.

Zebra’s best routes are finally injected into the routing table of the ker-
nel, which is used to actually forward packets. All the routing daemons,
including Zebra, can be contacted via telnet on a dedicated TCP port to
check the status of routing protocols and perform “on the fly” configuration.

The daemons provide a Command Line Interface (CLI) which closely
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resembles that of Cisco routers. Most of the commands available on real
devices can be used, but each daemon only provides those commands that
are specifically oriented to the routing protocol it manages.

For example, ripd does not provide the show ip bgp command, and bgpd
must be contacted in order to be able to issue it. However, the Zebra suite
also comes with vtysh, an integrated shell that provides a unique interface
to all the daemons. Unfortunately, Zebra development is somewhat slow.
For this reason, and also in order to create a community that does not rely
on a centralized model, the Quagga project has been started.

Quagga'® is essentially a fork of Zebra in which proposals from a com-
munity of users are usually discussed and more quickly acknowledged. As
a result, Quagga provides bug fixes and functionalities that are missing in
Zebra, sometimes at the expense of stability (both stable and unstable re-
leases of Quagga are available).

At present, Netkit does not provide the Quagga routing suite. However,
it can be easily installed in case. It is needed, and there are plans to include
it in future releases” [18]

Since ldpd, the implementation of LDP protocol as daemon discussed in the next
chapter, requires Quagga, Zebra must be uninstalled to avoid unexpected conflicts.
Quagga is described in detail in Chapter 3.

2.2.4 Conclusion on Netkit

Netkit is definitely a great tool, very customizable, a lightweight emulator and very easy
to install. Its developer community is still small but the support provided by the Netkit
team is really outstanding. Furthermore, this tool takes more time to download than to
install and configure. Everything is simple and well documented. The man pages are
really helpful and the usability is very good.

2.3 AROMA testbed

2.3.1 Description

AROMA stands for Advanced Resource Management Solutions for Future All IP He-
terOgeneous Mobile RAdio Environments. It is the name of an European project, let us

Onttp:/twww.quagga.net
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see what is it all about:

“The objective of the AROMA project is to devise and assess a set of
specific resource management strategies and algorithms for both the access
and core network part that guarantee the end-to-end QoS in the context of
an all-IP heterogeneous network. [...]

AROMA project aims not only to asses and maximize the potential
benefits coming from the medium-term evolution of the considered radio-
access technologies (e.g. HSDPA/HSUPA; MBMS ) but in parallel also to
promote and investigate potential benefits coming from a long-term evolu-
tion towards an all IP heterogeneous mobile and wireless network archi-
tecture. In that context, the RAN [(Radio Access Network)] architecture
should also evolved to accommodate future IP-based networks, which al-
low a common transport even in different access networks, simple resource
management, and easy heterogeneous inter-working.

On the other hand, in order to support end-to-end QoS in a heteroge-
neous wired and wireless mobile environment, an appropriate interaction
between the QoS management entities of the core network (CN) and the
Common Radio Resource Management (CRRM) in the radio part is cru-
cial. These kinds of issues are extensively covered in the project.

Last but not least, it is also prime important to carry out economic eval-
uation on the impacts of the novel architecture solutions considered by the
project.

In summary AROMA aims at providing tangible contributions, in terms
of resource management, for the future all IP heterogeneous wireless sys-
tems, which will take into account 2G/2.5/3G (e.g. GERAN, UTRAN ) and
3.5G networks (e.g. HSDPA), including the newly emerging RAN tech-
nologies (e.g. WLAN , WIMAX ) and services, for the 2010-2015 time
frame.

In order to accomplish these objectives, the project evolves around two
main activities:

1. Algorithmic development and simulation by means of advanced sim-
ulation tools,

2. Demonstration of the technology by means of implementing real-time
testbeds for proof of concepts.
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[...] Results obtained in AROMA are expected to be of significant momen-
tum, the beneficiaries to which are service-providers, operators, manufac-
turers and end-users.”[24]

2.3.2 The Real AROMA testbed

The testbed built for the AROMA project is located at the Universitat Politéecnica de
Catalunya (Barcelona, Spain), at the department of Signal Theory and Communication.
During five months on his traineeship, the author of this thesis was in charge to make
few changes on the testbed in order to fulfill the AROMA requirements. The Appendix
A shows the certificate thereof.

The virtual tested studied in Chapters 3 and 4 is based on the real AROMA testbed.
Figure 2.5 shows the virtual testbed AROMA. The real (physical) AROMA contains
more computers such as a computer dedicated to generate traffic (Traffic Generator) ac-
cording to stochastic models, User Equipment, and so forth.

At the beginning, the testbed name was EVEREST. Further studies showed that this
testbed was missing three core routers to provide accurate and multicase tests. The
EVEREST testbed with the three new core routers is now called AROMA. Three core
routers were needed for special case testing purpose. Currently, AROMA can reproduce
the Fish problem.

Figure 2.4 illustrates the well-known Traffic Engineering Fish problem. The ARO-
MA testbed has the same configuration besides collision domains'!, see Figure 2.5 and
Figure 2.4.

In order to be rigorous, the virtual AROMA testbed was designed with the exact
same interface names and IP addresses than the real ones. By definition of a collision
domain, each virtual machine that is connected to a given collision domain will receive
all the packets sent on that domain. Hence, the behavior is not exactly the same since
the real AROMA testbed has all its nodes connected by switches whereas the virtual
AROMA testbed uses collision domains (or virtual hubs). This impacts the behavior
of the subnetworks 192.168.80.0/24 and 192.168.50.0/24. The result is obvious when
all virtual machines have a routing daemon running up. All virtual machines are reach-
able from every other virtual machine, thus, a ping from SOURCE to DESTINATION
through these two collision domains will be double acknowledged !2. The packets are

1TSee Section 2.2.2, page 36, for more information about collision domains.
12Not clear whether duplicates occurred on the way to DESTINATION when hopping from CRI to
CR2/CR3 or on the way back between ER and CR2/CR4.
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duplicated and thanks to the routing table, every virtual machine is able to route them
across the network.

PING 192.168.70.2 (192.168.70.2) 56(84) bytes of data.

64 bytes from 192.168.70.2: icmp_seq=1 tt]=60 time=4.07 ms

64 bytes from 192.168.70.2: icmp_seq=1 ttlI=60 time=4.10 ms (DUP!)
64 bytes from 192.168.70.2: icmp_seq=2 ttl=60 time=2.12 ms

64 bytes from 192.168.70.2: icmp_seq=2 ttI=60 time=2.95 ms (DUP!)
64 bytes from 192.168.70.2: icmp_seq=3 tt]=60 time=1.99 ms

64 bytes from 192.168.70.2: icmp_seq=3 tt]=60 time=3.61 ms (DUP!)
64 bytes from 192.168.70.2: icmp_seq=4 ttl=60 time=1.99 ms

64 bytes from 192.168.70.2: icmp_seq=4 ttl=60 time=3.69 ms (DUP!)

However, there are two ways to avoid these packet replicas :

1. First, by creating more interface in order to connect the nodes by a direct-single
network interface.

2. Second, by installing a virtual machine acting like a switch between the virtual
machines.

This is a real dilemma because the first solution can be easily done but the virtual
testbed can no longer be called AROMA since the configuration changed. The second
solution is harder to set up and requires more resources. The packet processing would
take more time and the results might be affected.

But how these replicas could impact the results anyway? As this scenario occurs
only with an IP network, a MPLS network will not have the packet replicas problem.
The path and the labels are globally defined at the contrary of an IP network which take
local routing decision with the hop-by-hop routing.

The Fish problem reveals why hop-by-hop routing (current IP routing) is not accu-
rate enough for the traffic engineering. Obviously, all the traffic from R1 to R5 would
automatically be routed through R2 — R3 — R4 because it is the shortest path.

This might cause extremely unbalanced traffic distribution. For instance, what about
the routers 26 and R7 being unused while 1?3 is a bottleneck?

The reasons are [22] :

Destination based forwarding: For all the data streams having the same destination,
eventually converge to the same path. All the packets containing the same desti-
nation IP, arriving at the router, will have the same next hop which may flood the
latter.

Local optimization of routes: Every router make a local decision, according to the
network information it receives it has to select (compute) the best path.
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IP Routing and the Fish
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Figure 2.4: Traffic Engineering: The Fish Problem. [21]

Hence, in order to have control over packet routing, MPLS (mpls-linux) seems to be
appropriate since it is able to set up explicit routes. Chapter 4 covers this part.

SOURCE . - DESTI NATI ON

Figure 2.5: The Virtual AROMA Testbed.

2.3.3 Deployment Study Case

During the deployment of AROMA and its the three new core routers, a few problems
arose. They are all common problems in relation to a IT management project. They
will be explained in chronological order. This was definitely a real-scale study case of
project management which enriched the experience of the author.
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ethO | 192.168.30.2
ethl | 192.168.40.2
ethO | 192.168.10.1
ethl | 192.168.30.1
ethO | 192.168.20.1
ethl | 192.168.40.1
ethO | 192.168.10.2
CR1: | ethl | 192.168.20.2
eth2 | 192.168.80.1
ethl | 192.168.50.1
eth2 | 192.168.80.2
ethl | 192.168.90.1
eth2 | 192.168.80.3
ethl | 192.168.90.2
eth2 | 192.168.50.3
ethO | 192.168.50.2
ethl | 192.168.70.1
DST: | ethO | 192.168.70.2

SRC:

IR1:

IR2:

CR2:

CR3:

CR4:

ER:

Table 2.1: IP configuration of the virtual AROMA testbed.

First of all, the three new nodes arrived more than a month late. Once arrived, they
were so slim and long that the rack into which they were supposed to be placed was too
short. There were no other way than waiting for another adapted rack before installing
the new nodes on the testbed. When the new rack arrived a week later, they needed to
be installed and configured according to the AROMA requirements. At the same time,
each node needed three network interface cards, but they only contained two, which
means that the testbed could not be deployed without a third card on each node. As the
three nodes had special dimensions, a special network card had to be ordered.

Meanwhile the three nodes were installed but still not configured because of the
missing network card. While waiting for the missing network card, the three nodes
were running but not connected to the other nodes from EVEREST. 13 Once turned on,
the power supply fans from the new computers were so noisy that those new machines
were switched with other computers from the department. They were less powerful but
they made a tolerable ambient noise. Nobody could have worked in the same room that
these computers. Most of these problems - insufficient number of network cards, too
large computers - are related to a discrepancy between AROMA requirements and spec-
ification of the supplied hardware. Better communication should have been considered
at the first place.

3The previous AROMA testbed.
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Then the three new “switched” computers were installed and configured. The net-
work configuration was a very time-consuming task because the physical network inter-
faces and their name in Linux (ethO, eth1, eth2) were mixed up. In other words, the only
way to know how a given network interface card matched a given name under Linux
was to ping every single interface and to see which (physical) interface was blinking on
the back of the computer.

Once all the interfaces matched their name under Linux, they had to be connected
to the Cisco switch and to the other computers. Unfortunately, a problem occurred in
the documentation of the Cisco switch configuration and / or the target configuration of
the AROMA testbed which led to a documentation problem. The error was difficult
to find out because the interface name of the new nodes did not match the names on
the target documentation. Moreover, the route configuration of the older nodes had to
be altered in order to take into account the new nodes. So, the whole testbed network
configuration was checked and correctly set up. A good tip is to glue a piece of paper
showing the name of the network interface on the back of the computer, on the cable,
and have an accurate documentation of switches and routers.

Another problem which was unpredictable is a power supply breakdown of the
testbed’s firewall — on computer running Linux — after a total power cut of the build-
ing. Without the firewall, the access to the testbed was impossible. The only way to have
a power supply within the hour was to take off the power supply from another computer
and substitute it to the broken one. In this case, improvising is the key concept. Secu-
rity is a domain where it is difficult and highly dangerous to improvise. Fortunately, the
whole network of the university was protected by another “main” firewall. To get access
to the whole university network, a login/password, a certificate and a key is needed to
be granted by the server and the firewall. The network of the testbed had even more
restricted access. Only few people including me had access to it.

Besides the few problems aforementioned, taking part to the deployment of the
AROMA testbed was a very interesting experience and it shows how hard it is to spread
the good information at the right time. To facilitate the work of researchers by writing
scripts and help them to solve their problems is really rewarding. Infrastructure man-
agement is a lot of improvising but in the end, everything was up and running and ready
to use for MPLS.
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CHAPTER 3

LABEL DISTRIBUTION ON AROMA

This chapter is dedicated to the LDP way whereas Chapter 4 will deal with the

manual configuration of LSPs at every hop. Both ways to configure a LSP have
advantages and drawbacks. They will be discussed in this chapter and the following
one.

The easiest way to configure a LSP is to specify at the edge router that a path will
be drawn to a given destination. This is an IP-prefix based FEC, as described in Section
1.3.2. In the present chapter, a validation of the LDP implementation 1dp_portable will
be presented for this scenario. The performance gap between nowadays IPv4 networks
and MPLS networks will also be illustrated with a benchmark.

L SPs might be set up either automatically, with the help of LDP, or manually.

3.1 Introduction

As previously seen in Section 2.3, the AROMA testbed allows 4 different routes from
SOURCE to DESTINATION to be used :

1. SOURCE —- IR1— CR1 - CR2 — FER — DESTINATION
2. SOURCE — IR2 — CR1 —- CR2 — FER — DESTINATION
3. SOURCE — IR1— CR1 - CR3 — CR4 — ER — DESTINATION

4. SOURCE —- IR2 — CR1 - CR3 — (R4 — ER — DESTINATION

The graphic representation is shown on Figure 3.1. Only the routes going through
I R1 will be used in this chapter, there is no good reason to go through 7/ R2 right now.
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Figure 3.1: 4 different routes for LSPs.

3.1.1 Hypothesis on Experiment

To assure the reproducibility of the results and for the reader understanding, let us define
precisely what the testing environment is. Then, the programs used to set up a MPLS
network are described.

Environment

On the mailing list of the mpls-linux project, the most common mistake done by the
testers is to forget to load the MPLS module. It may result in unexpected behavior of
MPLS programs (iproute2, iptables, quagga). This command must be executed with
root privilege.

$ /sbin/modprobe mpls4

Many testers wonder why MPLS programs return weird errors and do not work properly
without the module loaded. The reason seems obvious.

Then, the IP forwarding of packets between interfaces must be enabled. On many
systems, it is enabled by default but it is better to confirm its activation.

$ echo 71”7 > /proc/sys/net/ipv4/ip_forward

Finally, and the most important, the software required to create MPLS networks
must be installed. They are presented hereafter in the following order: iproute2, ipta-
bles, quagga. They can be installed from the source code downloaded from the Perfoce
repository, see the mpls-linux website for more information. Alternatively they can be
installed from the RPM’s on SouceForge'

Vhttp://sourceforge.net/project/showfiles.php ? group _id=15443
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Iproute2

Iproute? is a collection of tools used for controlling TCP and UDP networking (basics)
as well as QoS (advanced), in both IPv4 and IPv6 networks. It is designed to interact
with the Linux kernel to provide quality of service and other routing features such as
load balancing, shaping, policing and so on. For the reader interested in these features,
the “Linux Advanced Routing & Traffic Control HOWTO” is a document providing
theoretical and practical concepts of quality of service using the tc? tool. From queu-
ing disciplines for bandwidth management to IPSEC, the documentation is a valuable
resource to learn how to manage a network.

The mpls-linux project has extended the iproute2 software suite (iproute2-mpls) in
order to have a front-end tool that interacts with MPLS kernel. This tool is the command
mpls. It is further described in Section 4.4 because it is not used in the present chapter.

Iptables

Iptables is a tool used by administrators to create packet filtering rules. From the techni-
cal perspective, this tool just interacts with the kernel which controls the packet filtering
and NAT (Network Address Translation) modules. The name Iptables may also refer to
the complete software suite that contains:

e The user space tool called “iptables”,

e Netfilter, a framework providing a set of Linux kernel modules for capturing and
modifying network packets,

e NAT module and
e Connection tracking.

The MPLS version of iptables will be used to intercept the traffic and turn it into
MPLS traffic; in other words, it is used to match IP traffic and to push the relevant label
in front of the IP header.

For instance, if we want to match the TOS field of an IPv4 packet and push a MPLS
label on top of it, the command looks like this:

iptables -A INPUT -p tcp -m tos —tos 0x16 -j mpls —nhlfe KEY

2Traffic Control
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The KEY argument is returned by the mpls command, see Section 4.4 for more de-
tails. The general syntax used to match TOS bits looks like:

-m tos —tos mnemonic [ other-args | -j target

The mnemonics are listed in Table 3.1. The target, from the “-j target” argument, is
in fact the same as the rest of the previous command : -j mpls —nhlfe KEY.

Mnemonic Hexadecimal | Decimal
Normal-Service 0x00 0
Minimize-Cost 0x02 2
Maximize-Reliability | 0x04 4
Maximize-Throughput | 0x08 8
Minimize-Delay 0x10 16

Table 3.1: TOS field value for iptables.

It is also possible to match the port, the source or the destination address. These
commands are very useful when the test includes many datastreams at the same time.

Quagga Routing Software Suite

This section is the continuation of Section 2.2.3 describing the Zebra routing software
suite. These sections were split because:

e Quagga is used the mpls-linux project and GNU Zebra is not.

e Quagga is a fork of GNU Zebra which was developed originally by Kunihiro
Ishiguro.

e There is a more active community around Quagga than the current centralized
model of GNU Zebra.

Quagga is a set of open source routing daemons which implement the common
routing protocols (RIP, OSPF, BGP). Each protocol runs as a separate daemon, and
those deamons are all synchronized via a management daemon (zebra). The reader must
pay attention to the differences between the program (daemon) called “zebra” and the
software suite “GNU Zebra” which contains zebra. Figure 2.3, summarizes the Zebra
architecture and also includes the ldpd daemon (LDP implementation).
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“The Quagga architecture consists of a core daemon:

zebra Which acts as an abstraction layer to the underlying Unix kernel
and presents the Zserv API over a Unix or TCP stream to Quagga clients.
It is these Zserv clients which typically implement a routing protocol and
communicate routing updates to the zebra daemon. Existing Zserv clients
are:

ospfd: implementing OSPFv2

ripd: implementing RIP v1 and V2
ospf6d: implementing OSPFv3 (IPv6)
ripngd: implementing RIPng (IPv6)

bgpd: implementing BGPv4+ (including address family support for
multicast and IPv6)

Additionally, the Quagga architecture has a rich development library to
facilitate the implementation of protocol/client daemons, coherent in con-
figuration and administrative behaviour.

Quagga daemons are each configurable via a network accessible CLI
(called a ’vty’). The CLI follows a style similar to that of other routing
software. There is an additional tool included with Quagga called "vtysh’,
which acts as a single cohesive front-end to all the daemons, allowing one
to administer nearly all aspects of the various Quagga daemons in one
place.”[16]

Another daemon is added to the list, it is 1dpd, the implementation of the LDP pro-
tocol. It is outlined in Section 3.2. Before entering into deeper technical aspects, let us
explain what 1dpd needs in order to make it work.

First, the zebra daemon must be up and running. To set up the zebra daemon,
documentation can be found on the Quagga’s website. An example of configuration file
can be found in Appendix C.

Second, a layer 3 or above routing protocol must be up and running. Ldpd only
advertises labels for routes which zebra learnt through an ip-routing protocol (OSPF, IS-
IS, etc). In this case, the OSPF daemon (ospfd) is playing that role. Setting up an OSPF
network is not so difficult but it requires some knowledge about Quagga configuration.
See Appendix C for example of an ospfd configuration file.
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Protocol configuration
Maintain configuration state
Status queries

Error notification

Packet encode/decode
Message processing

Socket activity: read/write, multicast
Timers

Memory allocation
(quagga-mpls) | Routing interaction
Interface interaction

User Interface

ldp-portable

Porting Layer

Table 3.2: Layers involved in the LDP implementation.

3.2 Implementation of LDP

The project 1dp-portable, also developed by James R. Leu?, is in fact a library imple-
menting the LDP protocol. Some code has been added to Quagga in order to use that
library as a separate daemon. The name of that modified Quagga is quagga-mpls.

Ldp-portable relies upon a layer called a ”porting layer” to provide the low level
primitive and infrastructure to build a working implementation of LDP. Table 3.2 shows
a graphic of the layers involved and what they handle.

The API that needs to be filled in by the porting layer is defined in
ldp-portable/common/*_impl.h. To port ldp-portable to another routing system than
Quagga (e.g. XORP) these files would need to be re-implemented. These files were
pointing out merely to give an overview of how ldp-portable relates to Quagga.

Ldp-portable provides an API to the user interface and the porting layer for some
operating system driven actions, which is defined in ldp-portable/ldp/ldp _cfg.c. This is
called the configuration APIL. It tries to mimic the LDP-MIB and the TE-MIB. # Ldp-
portable also contains all the data structures for the message processing and packet
encoding/decoding. Nortel released a file containing all encoding/decoding functions®.
Quagga-mpls is a just one porting layer that exists and by far the most mature.

Most of the actual user interface for Quagga’s usage of ldp-portable is defined in
quagga-mpls/ldpd/ldp vty.c. The user interface is mainly the CLI from Quagga adapted

3http://mpls-linux.sourceforge.net

4MIB stands for Management Information Base, it is a virtual database where information about the
network is stored. For more information, refer to the SNMP protocol or to the RFC 1156.

For more information, see http://www.nortel.com/products/announcements/mpls/source/disclaimer. html
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with ldp-portable command. It relies upon the utilities and structure implemented in
ldp_interface.c, ldp.c and ldp_remote _peer.c to maintain the configuration state for Idpd.
It makes calls to the configuration API to actually make ldp-portable work. In addition,
the code in ldp_zebra.c is responsible for feeding routing and interface changes into 1dp-
portable. The user can dynamically change routing settings thanks to the user interface.

Currently, ldp-portable running on top of quagga-mpls provides :

Handling of MPLS labels as nexthop

Handling of MPLS labels as recursive nexthop.

Implementation of CLI for static LSPs.

e Implementation of a porting layer.

There are also a few features ldp-portable does not provide yet such as penultimate
hop popping and loose/explicit routing. These features would have been really helpful
in this thesis.

3.3 Experiment

The testbed upon which the test of LDP will occur is described in Figure 2.5. There are
two ways to configure ldpd : by the vtysh CLI or by the telnet command. The use of
vtysh is definitely the most convenient, so the telnet way will not be described here.

3.3.1 Starting the Testbed

First things first, the virtual testbed must be started. The command to start the testbed
can be executed by a simple user, virtualTestbed is the directory from which the ARO-
MA virtual testbed will be launched. Just enter the following command :

virtualTestbed $ ./AROMA .sh start

It launches a terminal for each virtual machine that can be configured separately by
the latter. The AROMA.sh script can be found in Appendix E.

3.3.2 Configuring a virtual machine

The vtysh CLI is not really handy when it comes to configure the seven virtual MPLS
routers of Figure 2.5 at the same time. As the configuration file makes LDP daemon
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Npjol + rLIR2.IR2 = B &
-—— 5Starting Metkit phase ¢ startup script

Executing: AhosthomesHetkit/virtual Testbed/AROMA.zh ..
changing directory to ShosthomesMetkit/virtual Testbed
wrrrEd CETTING [P FORWARD

wddeksek | AANING HPLS MODULES
HPLS: werszion 1,950

—————— MPLS MODULES —---—- LOADED
wren STARTING DEAMONS
Labelzspace: 0

Labelzpace: 0
—————— DEAMOMS ---------—— STARTED

YWirtual host r_IRZ2-IRZ ready,
——— Metkit phaze 2 init zcript terminated
r_IR?-IR2 login: root {automatic login)

Linux pcl 2,620 #1 Fri Apr 27 17:15:13 CEST 2007 i636 GHUALinux
Welcome to Metkit

r_IR2-IR2:~% |

Figure 3.2: Screenshot of a started virtual machine

(I1dpd) crash, it cannot be configured in advance. Otherwise, the configuration of every
single virtual machine would have been automatically done by the AROMA.sh script.
Eventually, vtysh is the most appropriate tool to configure 1dpd. To enter into vtysh, just
execute this command :

$ vtysh

on a bash prompt of a virtual machine, let’s say CR2, and here is what should be
printed out :

r_CR2-CR2:~# vtysh

Hello, this is Quagga (version 0.99.6).
Copyright 1996-2005 Kunihiro Ishiguro, et al.

r_ CR2-CR2:#
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i@@ 1dp01_CRA.cap -

Eile ;dn_ ¥1ew Go Qa.pt.ure Analyze Statistics gelp.

BEYee PEXSc AesoF Qeaf GMEX 8
[ it = | 4 Exprossion .| Y Clear ¥ aosly

No . |Time Source | Destination Protocol | Info

g
E

»

6 3.993835 192.168.50.2 224.0.0.2 LDP  Hello Message
7 4.088889 192.168.50.3 192.168.50.2 LDP  Keep Alive Message

8 4.089192 192.168.50.2 192.168.50.3 TCP 645 > 3536 [ACK] Seq=0 Ack=18 Win=2896 Len=0 TSV=447956 TSER=449345
9 4,089562 192.168.50.2 192.168.50.3 LDP  Keep Alive Message

10 4.089576 192.168.50.3 192.168.50.2 TCP 3536 » 646 [ACK] Seq=18 Ack=18 Win=2920 Len=0 TSV=449345 TSER=447956
P Frame 6 (76 bytes on wire, 76 bytes captured)
b Ethernet 11, Src: 02:78:e3:f:8f:94 (02:78:e3:f:8f:94), Dst: 01:00:5e:00:00:02 (01:00:5e:00:00:02)
b Internet Protocol, Src: 192.168.50.2 (192.168.50.2), Dst: 224.0.0.2 (224.0.0.2)
b User Datagram Protocol, Src Port: 646 (846), Dst Port: 645 (646)
¥ Label Distribution Protocol
version: 1
PDU Length: 30
LSR ID: 192.168.50.0 (192.168.50.0)
Label space 1D: ©
< Hello Message
Ot _siast = U bit: Unknown bit not set
Message Type: Hello Message (0x100)
Message Length: 20
Message ID: 0x0000000L
< commen Hello Parameters TLV
0. it = TLV Unknown bits: Known TLY, do not Forward (0x0O)
TLV Type: Common Hello Parametsrs TLV (0x400)
TLV Length: 4
Hold Time: 15
o — = Targeted Hello: Link Hello
{0.. .iet wien ... = Hello Requested: Source does not request periodic hellos
..00 0000 0000 0000 = Reserved: 0x0000
v configuration Sequence Number TLV
00.: it = TLV Unknown bits: Known TLV, do not Forward (0x00)
TLV Type: Configuration Sequence Number TLY (0x402)
TLV Length: 4
Configuration Sequence Number: 9
GULU UU 38 U0 UU 40 OU UL I 8/ UZ CU 85 32 UZ 80 00 .>. . ... ....2... 3
10020 00 02 02 86 02 86 00 2a 2b &2 FENCINGRIEFREIFE *

[clok>Ml=> 00 0O 00 01 00 00 14 00 00 00 1 04 00 00 04
clcrloMllo0 of 00 OO 04 02 00 04 60 06 60 od

|Label Distribution Protocol (dp), 34 bytes

P: 295 D: 295 M: 0

Figure 3.3: Screenshot of LDP message capture.

Note that the tilde (~) between the *:” and the '#’ does not appear after the vtysh
command was entered. This means that prompt is not bash anymore (or sh or zsh, what-

ever prompt used), it is the vtysh prompt. A screenshot of the present vtysh prompt is
shown on Figure 3.2.

Afterwards, let us enter the ldpd related commands to start the LDP protocol. Here
is for example the LDP configuration of the interfaces eth1 and eth2 of a virtual machine
(CR2) with a per-platform labelspace:
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# configure terminal

# (config) $ mpls 1dp

# (config-1dp) $ exit

# (config) $ interface ethl

# (config-if) $ mpls labelspace 0
# (config-if) $ mpls ip

# (config-if-ldp) $ exit

# (config-if) $ exit

# (config) $ interface eth2

# (config-if) $ mpls labelspace 0
# (config-if) $ mpls ip

# (config-if-ldp) $ exit

# (config) $ end

#

enter into the configuration mode
activate LDP

go back to configuration mode
enter into interface mode of eth1
set per-platform labelspace
activate LDP for this interface
go back to interface mode

go back to configuration mode
let’s do the same for eth2

set per-platform labelspace
activate LDP for this interface
go back to previous mode

end the configuration

top level

Note that if the “mpls ip” command is not entered on a network interface configura-
tion mode, this network interface will not execute the LDP protocol!

3.3.3 Setting up LSPs

After all the routers have been configured, the virtual testbed is ready to set up a LSP
by LDP. A simple way to see if the LDP daemon is actually working is to sniff the
network during 10 seconds or more. A Hello Message should be captured. Figure 3.3,
shows a capture of the so-called Hello Message. Note that the destination address is
224.0.0.2, which is a broadcasting address. This is meant to discover new neighbors by
broadcasting a message over UDP. Just below the Hello Message there is a Keep Alive
Message which is meant to be sure that the router is still working (alive).

The ingress router, in this case IR1, is able to setup a LSP by creating an entry into
the NHLFE table and by mapping a FEC to the latter. Note that if the datastream is
connection oriented, it should have an upstream LSP (i.e. set up an LSP at the egress
router, ER). These commands are described in Section 4.4.

The commands relative to the LSP creation are explained in Chapter 4. Only the
edge routers are allowed to create a LSP, it justifies that only the ingress router com-
mands are needed in order to set up a LSP.

Figure 3.4 shows which path LDP use to set up a LSP from the source to the desti-
nation. It is using this path because it relies on zebra to provide the routes to advertise
the labels accordingly. The routes provided by zebra are actually provided by ospfd
to zebra. This is a way to abstract the fact that 1dpd gets its route information from a

60



3.4. Benchmarking Chapter 3. Label Distribution on AROMA

DESTINATION

Figure 3.4: LSP setup by LDP.

layer-3 protocol as explained in the end of Section 3.1.1 (The second requirement for
ldpd to work properly, page 55). As none is especially required, ospfd seemed to be a
good candidate. The OSPF protocol is not the only one, IS-IS could have done the work
but ospfd is older, hence more reliable and robust.

3.4 Benchmarking

MPLS standards has evolved since its creation, lots of drafts and RFCs are dedicated to
it and the number is still growing. The benchmarking is a technique used to compare
multiple object performances. In this section, the implementation of the MPLS protocol
used all along this thesis, mpls-linux, is compared to the TCP/IP protocol. In other
words, it shows the results of IPv4 versus MPLS.

3.4.1 Benchmark Environment

The AROMA virtual testbed will be used to benchmark the MPLS and the IPv4 network.
As in the IPv4 network OSPF protocol is running in order to make every node reachable
from every other node. The route selected will be the exact same route as in the LDP
case (i.e. the shortest path based on the OSPF information).

The tool used to measure the network performances is Iperf. ¢ Iperf is designed to
measure maximum TCP bandwidth. It is not its only purpose but the delay jitter and
datagram loss rate are not very relevant with the virtual testbed. With a virtual testbed,
these parameters are limited by the CPU which emulates all virtual machines. That is
the reason why this is a relative comparison, not an absolute performance measurement.

The tests conducted were the measurement of maximum TCP bandwidth during 30
seconds. The tests were repeated five times and the latest results are exposed hereafter.
As the computer upon which the virtual testbed was emulated is a desktop computer,
the results might have been altered by other running applications and/or daemons.

Shttp://dast.nlanr.net/Projects/Iperf
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3.4.2 Results

MPLS Vs IPv4
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\\ Ipv4 *+. MPLS debug off \. MPLS debug on

Figure 3.5: MPLS vs IPv4 TCP/IP benchmark.

Figure 3.5 shows the graphical comparison between a IPv4 network and a MPLS
network. As we can see, the IPv4 traffic (higher line) is faster than the MPLS traffic
(dotted line and lower line). Table 3.3 shows the numerical results from the comparison.
In theory, the MPLS network should be faster than the IPv4 network. The results may
seem incorrect because the IPv4 network is faster than the MPLS one but the reason
is given by James R. Leu, developer of the mpls-linux project. Here is his verbatim
comment:

“Why is MPLS Linux slower at forwarding packets then Linux’s IPv4
stack?

There are some misconceptions out [there] regarding the speed of MPLS
vs IPv4 packet processing ....

Back in the mid 90’s the state-of-the-art in edge and core routing tech-

nology was processor based packet forwarding. At that same time the re-
quirements for how per packet forwarding decisions were being made was
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Ipv4 | MPLS MPLS
debug off | debug on
Mbits/sec

1] 25.0 20.3 1.31
2 ] 28.0 22.5 1.70
31 27.7 22.5 1.90
4| 28.6 22.7 1.31
5| 277 22.2 1.77
6 || 28.5 21.8 1.84
71 27.9 19.2 1.84
8 || 24.8 21.7 1.64
91 28.6 21.1 1.84
10 || 27.9 21.9 1.64
11 279 21.8 1.97
12 || 28.7 21.7 1.70
13 || 27.8 21.6 1.84
14 || 28.2 22.7 1.84
15 || 25.3 21.0 1.51
16 || 27.6 23.1 1.64
17 || 28.2 22.3 1.90
18 || 28.3 21.6 1.77
19 || 28.7 10.0 1.70
20 || 27.9 21.4 1.51
21 || 284 22.0 1.77
22 || 29.2 22.5 1.64
23 || 27.7 21.4 1.77
24 | 28.8 23.0 1.84
25 || 27.5 21.6 1.84
26 || 28.6 22.2 1.70
27 || 28.6 22.7 1.84
28 || 27.9 21.4 1.70
29 || 27.1 23.0 1.84
30 | 28.3 21.7 1.84
AVG || 27.9 21.5 1.73

Table 3.3: MPLS vs IPv4 - values.
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getting more complicated. Edge and core routers were being asked to con-
sider source and destination addresses, incoming and outgoing interfaces,
as well as TCP/UDP port numbers. This forced router vendors to switch
to some sort of "flow” or "hash” based look up to determine the forward-
ing treatment (next hop and/or queuing). As any [computer science] major
knows both flow and hash based look up schemes can suffer from high
amounts of “key collisions” when 1000s of packet flows per second are be-
ing considered. This in essence change the look up depth from 32 bits to
something greater then 32 bits depending on the technique and the amount
of “’key collisions”. So per packet decisions making was becoming a bot-
tle neck in the core of the network. Along came various "IP Switching”
techniques and “tag switching” all of which contributed to MPLS. One of
the benefits of MPLS at that time was that the complex decision making
for forwarding treatment was done once before at "LSP setup time” and
per packet processing would be a consistent 20 bit look up. If the state-of-
the-art in packet forwarding has stood still, then MPLS would have been
the savior of core routing, but in the time it took for MPLS to become a
standard the world of packet forwarding was revolutionized by ASICs and
FPGAs. These hardware based packet look up engines could do the com-
plex look up required by core and edge routers faster th[a]n the pipes could
transport the packets.

So when people said "MPLS should be faster then [Pv4 at packet pro-
cessing” they were not referring to standard destination based IPv4 forward-
ing, they were talking about complex forwarding decision making. Theo-
retically standard IPv4 destination only processing has a worst case of 32
bits of look up and MPLS has a constant 20 bits of look up, not enough of a
difference to show up in throughput tests. So if your comparison of MPLS
Linux forwarding versus Linux IPv4 forward is only based on IPv4 desti-
nation look ups, you should not expect to see a performance benefit (in fact
MPLS Linux forces all ILM keys into a 32 bit number, so it too is doing
a 32 bit look up :-). That in combination with the fact that MPLS Linux
has not under gone any sort of optimization and has enormous amount of
debug/tracing code, while the Linux IPv4 stack has undergone years of op-
timization by some of the brightest minds in the world. I’'m surprised that
MPLS Linux has performed as well as it has in the tests results I've seen.”’

Note that the performances are approximately ten times worse with the debug mes-
sage activated. In order to have better performances, the debug message must be deac-

" http://mpls-linux.sourceforge.net/mpls-faster-then-ipv4.html
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tivated. Here is the command to turn it off:

$ echo 0 > /sys/mpls/debug

3.5 Conclusion

The LDP protocol is good enough for simple LSP creation but is not designed to pro-
vide quality of service (QoS) or traffic engineering (TE). It is mainly aimed to facilitate
the administration of a MPLS network, in other words, to maintain and manage the
database of the LSRs. However, the validation of the LDP protocol implementation
(I1dp_portable) demonstrates that it works fine and enables to create LSP. Once config-
ured, the virtual machines act as MPLS-LDP compatible routers.

Unfortunately, the routing information provided by another routing protocol might
cause congestion. Hence, it is needed to provide traffic engineering in order to have
more control about the route used and the QoS parameters. On the other hand, to con-
duct a test on a virtual testbed to measure QoS parameters is not relevant. Only a
physical testbed could do this work.

Fortunately, an extension of the LDP protocol can provide TE and QoS. This is
Constraint-based Routing Label Distribution Protocol (CR-LDP). This protocol is out-
lined in Section 1.4.2, page 24.

The benchmark showed that the mpls-linux implementation is slower than the cur-
rent IPv4 forwarding process. The thesis of Pere Tuset [11] ® confirms this fact by
testing mpls-linux on a real hardware testbed.

8English title: “Performance analysis of a mpls-linux network”
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CHAPTER 4

CONSTRAINT ROUTING ON AROMA

ing at compliancy with RFC 3214. Only the way of doing so and the results will
be discussed here, since the tools and softwares used for this test have already
been described in Chapter 3.

T his chapter will cover the rerouting of one explicit route to another in a way aim-

4.1 Rerouting LSPs method from RFC 3214

This section shows how the rerouting of LSPs was designed at the first place. The
rerouting should actually be done by a daemon that implements the CR-LDP protocol.
The LDP protocol is implemented as daemon thanks to the Quagga routing software.
The LDP daemon could have been modified in order to provide the proper extensions
to set up interactively and in an abstract way the LSPs but by lack of time and the high
complexity of Quagga and the LDP daemon make the task too hard to achieve.

Here the verbatim method taken from the RFC 3214:

“LSP modification can also be used to reroute an existing LSP. Only modi-
fication requested by the ingress LSR of the LSP is considered in this docu-
ment for CR-LSP. The Ingress LSR cannot modify an LSP before a previous
modification procedure is completed.

Consider a CR-LSP L1 with LSPID L-id1. To modify the route of the LSP,
the ingress LSR R1 sends a Label Request Message. In the message, the
LSPID TLV indicates L-id1 and the Explicit Route TLV is specified with
some different hops from the explicit route specified in the original Label
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Request Message. The action indication flag has the value _modify .

At this point, the ingress LSR R1 still has an entry in FTN as FEC1 — La-
bel A. R1 is waiting to establish another entry for FECI.

When an LSR Ri along the path of L1 receives the Label Request message,
its behavior is the same as that of receiving a Label Request Message that
modifies some other parameters of the LSP. Ri assigns a new label for the
Label Request Message and forwards the message along the explicit route.
It does not allocate any more resources except [in the specific cases] de-
scribed in Section 3.1.!

At another LSR Rj further along the path, the explicit route diverges from
the previous route. Rj acts as Ri, but forwards the Label Request message
along the new route. From this point onwards the Label Request Message
is treated as setting up a new LSP by each LSR until the paths converge at
later LSR Rk. The _modify_ value of the action indication flag is ignored.

At Rk and subsequent LSRs, the Label Request Message is handled as at Ri.

On the return path, when the Label Mapping message is received, two sets
of labels for the LSPID exist where the new route coincide with the old.
Only one set of labels will exist at LSRs where the routes diverge.

When the Label Mapping message is received at the ingress LSR R1 it has
two outgoing labels, A and B, associated with the same FEC, where B is
the new outgoing label received for LSP L1. R1 can now activate the new
entry in the FTN, FEC1 — Label B and de-activate the old entry FEC1 —
Label A. This means that R1 swaps traffic on L1 to the new label B. The
packets are now sent with the new label B, on the new path.

The ingress LSR R1 then starts to release the original label A for LSP L1.
The Label Release Message is sent by R1 towards the down stream LSRs
following the original route. The Release message carries the LSPID of
L-id1 and the Label TLV to indicate which label is to be released. At each
LSR the old label is released - no further action is required to change the
path of the data packets which are already following the new route pro-
grammed by the Label Mapping message.

!This section of the RFC describes how to avoid double booking resources. It does not concern the
scenario of this chapter because it is not planned to reserve resources.
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At some LSRs, where the routes diverged, there is only one label for the
LSPID. For example, between Rj and Rk, the Label Release Message will
follow the old route. At LSRs between Rj and Rk only the labels from the
original route will exist for LSPID L-id1. At these LSRs the LSPID TLV
does not need to be examined to release the correct label, but it must still
be updated and passed on to the next LSR as the Label Release message is
propagated. In this way, at Rk where the routes converge, the downstream
LSR will know which label to release and can continue to forward the Label
Release Message along the old route.”[3]

4.2 Description of the LSPs

Two LSPs will be drawn across the virtual testbed: the main LSP and the back LSP. For
both LSPs, packet processing be performed at edge routers: ingress (IR1) and egress
router (ER).

DESTINATION

| MPLS Label (downstream) . Downstream
B MPLS Label (upstream) Upstream

CJw packet W Router MPLS-enabled
1000

MPLS Label number and IP packet

Figure 4.1: 2-way explicit MPLS route.
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4.2.1 Main LSP

This LSP is an explicit route set up with the help of the mpls command which is part
the iproute2-mpls program, as seen in Section 4.4. The LSP, let’s call it LSP-A, is com-
posed by two LSPs : one in downstream (LSP-A DOWN) and one in upstream (LSP-A
UP).

The path is:

SOURCE — IRl - CR1 — CR3— CR4 — ER — DESTINATION
for the downstream and

SOURCE <« IR1 +— CR1 «—« CR3+— CR4 «— ER « DESTINATION
for the upstream.

Figure 4.1 shows the main LSP that the datastream will switch from. The real and
effective behavior might be a bit different. Figure 4.1 shows that the downstream be-
tween CR4 and ER has a label 1003 and the upstream between CR1 and IR1 has a
label 1007. This is not actually true if the penultimate hop popping® mode is active.
So, CR4 on downstream and CR1 on upstream would pop the label before sending the
packets to the outermost MPLS router; ER and IR1 respectively.

Note that Figure 4.1 is different from Figure 3.4. The most obvious difference is the
path used by the datastream but also whether the labels are defined by the user or not.
In Figure 3.4, the labels are managed by the LDP protocol and are not defined by the
user interface such as in this test. In Figure 4.1, the labels (numbers) are set on each and
every node thanks to the mpls command.

Any hop-by-hop routing protocol would have oriented the traffic on CR2 because
it is the shortest path. With explicit routing, it is possible to guide the traffic in order
to balance it across the network and to reduce possible congestion spots. As seen in
Chapter 3, LDP gets its routing information from the routing tables that were filled by
the OSPF daemon. The route that would have been used if OSPF was running is the
route passing through CR2 (if the metrics were not changed on purpose).

4.2.2 Backup LSP

The LSP, let’s call it LSP-B, is composed by two LSPs : one in downstream (LSP-B
DOWN) and one in upstream (LSP-B UP).

The path is:
SOURCE — IR1 —- CR1 — CR 2 — FER — DESTINATION

2See Section 1.3.3, page 17.
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for the downstream and
SOURCE «— IR1 +— CR1 «— CR2 + ER < DESTINATION
for the upstream.

In the real world, this LSP will be used only if the main LSP crashes. This scenario
is a make-before-break method as described in Section 1.4, page 29.

When the switch of LSP will occur, instead of going through the CR3 and CR4
nodes, the datastream will go through CR2. Before switching, the backup LSP must
be set up with unique labels (according to the labelspace), i.e. different from the labels
already in use by the main LSP. Once again, if the penultimate hop popping mode is
active the downstream between CR2 and ER will not be labeled.

4.3 Hypothesis on experiment

1. Lack of accuracy for delay measurements — virtual testbeds are not accurate
for delay measurements because the packets are not “really” sent over a cable or
by microwaves. So, measuring the time it takes to switch from one LSP to another
is not relevant.

2. Manual set up of LSPs — LSPs are created with the help of a configuration
script. Their properties are hardcoded. Hence, both the primary LSP and its back
up will be configured in such a script.

3. LSP switching at edge routers only — only the ingress and the egress nodes are
allowed to switch the traffic from one LSP to another. Core nodes have a different
role to play and a limited control over the whole LSP that goes through.

4.4 The mpls command

The mpls command is actually a front-end utility to interact with the MPLS kernel. With
this tool, it is possible to add, delete and even change the MPLS configuration. This sec-
tion is definitely not an exhaustive documentation, it only explains the command that
will be used in this case. It is, however, a good start to create LSPs. The syntax of the
mpls command is in Appendix D.

As there are three kinds of routers — ingress, core, egress — it is normal to set up

a LSP accordingly. First, the ingress router acts like a classifier, it does some traffic
engineering to determine what traffic should go on which LSP.
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It is assumed that the reader knows a little of shell scripting, the use of pipes and so
on.

4.4.1 Ingress Router Command

These commands must be executed on the ingress router IR 1. First, it creates a NHLFE
entry to add label 1000 (PUSH) and forward the packets (nexthop) to 192.168.10.2 us-
ing outgoing interface eth0.

$ key_1="mpls nhlfe add key 0 instructions push gen 1000 nexthop eth0 \
ipv4 192.168.10.2 |grep key |cut -¢ 17-26

The “key 0” means that it will return a new key if the command is successfully. The
“gen” parameter means that we use Ethernet encapsulation. And the “ipv4” parameter
means that it use the IPv4 layer 3 protocol.

The mpls command, then, returns a key in hexadecimal, the rest of the command
(i.e. “|grep key |cut -c 17-26”) only takes the hexadecimal key and not the text around.
That is really useful because key need to be stored (in a variable) for further use.

Then, it maps the FEC to the NHLFE created earlier.

‘ $ /usr/sbin/ip route add 192.168.70.2/32 via 192.168.30.1 mpls $key_1

The $key_1 is a variable that contains the key returned by the mpls command while
it created the NHLFE entry. In this case, for the sake of simplicity, it only uses the
destination IP to match? the traffic to a FEC.

4.4.2 Core Router Command

These commands must be executed on the core router CR1. The other core routers must
also execute this command but parameters (labels, interfaces) should be adapted accord-

ingly.

First, this command tells the router on which interface the MPLS packets should
be expected to arrive. The labelspace is used to determine if it is per platform or per
interface labelspace. When the labelspace is equal to zero (labelspace 0), it means that
it is a per platform labelspace.

3To “catch” the traffic would be more appropriate since no other traffic exists besides the one that the
source is generating
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$ mpls labelspace set dev ethQ labelspace 0

Then, an entry to the ILM table must be added in order to list an expected label.

$ mpls ilm add label gen 1000 labelspace 0

Afterwards, another NHLFE entry must be created to forward the MPLS packet.

$ key_1="mpls nhlfe add key O instructions push gen 1001 nexthop eth2 \
ipv4 192.168.80.3 |grep key |cut -¢ 17-26

Finally, this command does the switching by mapping the ILM entry to the NHLFE
entry.

$ mpls xc add ilm_label gen 1000 ilm_labelspace 0 nhife key $key_1

The “xc” parameter is used to specify that it switches from label 1000 to the label
defined by the NHLFE entry (1001 in this case).

4.4.3 Egress Router Command

These commands have the same meaning than the commands for the core router com-
mands:

$ mpls labelspace set dev ethO labelspace 0
$ mpls ilm add label gen 1003 labelspace 0

$ key_1="mpls nhlfe add key 0 instructions nexthop ethl \
ipv4 192.168.70.2 |grep key |cut -¢ 17-26

This last command is actually the same as the core router commands but the behav-
ior of the egress router is quite different.

$ mpls xc add ilm_label gen 1003 ilm_labelspace 0 nhife_key $key 1

A mode called the penultimate hop popping avoids resource wastage. This mode is
described in Section 1.3.3. This mode is used to avoid the egress router to make two
lookups: one for the MPLS label, one for IP address. Hence, it reduces the load on the
edge router. Unfortunately, this mode is not implemented neither in mpls-linux nor in
ldp-portable.
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Figure 4.2: Graphic of packets from LSPs switch (simple ping).

4.5 Rerouting LSPs

This section intends to outline what happened when the traffic switches from LSP-A
(main LSP) to LSP-B (backup LSP). Figure 4.2 was produced thanks to Wireshark*
and shows the result of the switch. All the packets were sniffed on the west interface
of CR1. Note that there is no packet loss during this test because ping uses a TCP
connection and the virtual testbed is not overloaded by packet processing of the ping
requests and replies. Figure 4.3 shows the three s.pdf for rerouting a two-way LSP. The
MPLS labels of LSP-A can be seen in Figure 4.1.

Figure 4.2 shows all the packets from the LSPs. The datastream used to test the
LSPs is just a ping, executed on the source and pointing to the destination : “ping
192.168.70.2”. The spot (D) is nothing but two ping replies received approximatively at
the same time. Figure 4.3a describes the situation from the beginning of the transmission
(time 0) to the spot @) (time 12) such as LSP-A is used. The spot (2 is the moment
where the downstream switches from LSP-A to LSP-B. The time frame between spot
@) and @) (time 36) is described by Figure 4.3b. Note that, at this moment, the ping
reply (upstream) is still using LSP-A while the ping request (downstream) is now using
LSP-B. At the spot (3), the upstream switches from LSP-A to LSP-B. Then, this case
is described by Figure 4.3c.

“http://www.wireshark.org
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Figure 4.3: Switch of LSP.

4.6 Conclusion

This “switch LSP” method must be done by hand. To have it done automatically’, a
full implementation of the CR-LDP® protocol is needed. The advantage of a full im-
plementation is that bandwidth reservation can be done and many other parameters can
be tuned in order to have the best network performances. Hence, more tests could have
been done and more scenarios could have tested with a full implementation of CR-LDP.

With the on-the-fly LSP rerouting, the protocol can detect a failure from a node and
reroute (previously called “switch”) a datastream to another path (i.e. a backup LSP)
without loosing the guarantee of the quality of service. It means that for example, a
Voice over IP communication can use more than one path along its session to reach its
destination, it corresponds to some extends to the GSM hand-over.

It means: on a single user interface and by a predefined command included into the software, not by
a simple script gathering fews commands and using tricks or hacks instead of API.
%See Section 1.4.2, page 24
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It is also possible to balance the load across the network by setting up different LSPs
according to the requirements of the datastream. The more the parameters can be tuned,
the more there are possibilities.
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CHAPTER 5

FUTURE WORK

after presenting the conclusion of this report. The first idea is a continuation of
the benchmark done in Chapter 3 that compares MPLS and IPv4. The last two
ideas are an application of the rerouting script executed in Chapter 4.

F inaly, this last chapter is intended to give some ideas for future developments

5.1 Conclusion

This report investigated the dynamic configuration of label switched path on a virtual
testbed. The study was performed with the help of Netkit [17] and the mpls-linux project
[15]. Some developments made this report possible.

Netkit has been used to emulate the virtual testbed while the mpls-linux project is
designed to create a set of MPLS signaling protocols and an MPLS forwarding plane for
the Linux operating system. Both projects are still on-going and some version conflicts
have occurred but the community around them is active and help to solve these issues.

Netkit is definitely a great tool when it comes to perform networking experiments
at low cost. Althought it was necessary to modify the file system, once the script to
start the testbed was written, everything was up and running. The mpls-linux project is
very complex and requires higher level of technical skills than Netkit because it suffered
from many version conflicts between kernels, modules and libraries.

On Linux, MPLS is a relatively new technology that can improve network perfor-
mances. The on-the-fly rerouting feature that was previously described can be very
helpful for in a context of setting up reliable QoS. In case one path is unavailable dur-
ing a communication, another path can be used to preserve the QoS guarantee without
interrupting the session. This feature would be interesting in many situations.
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5.2 MPLS versus IPv6

In Chapter 3, a benchmark of MPLS versus IPv4 is described. Intuitively, as a MPLS
label is coded on 20 bits, one would expect a MPLS lookup to be faster than an 32-bit
IPv4 lookup. As James R. Leu explained in his comment, MPLS is slower because of
the debugging and tracing code, the extension of the 20-bit MPLS label to 32 bits and
the optimization of the IPv4 code.

Hence, the comparison of MPLS and IPv6 is relevant since IPv6 requires a 128-bit
lookup. It would be interesting to compare the results with [11].

5.3 Fast Reroute

The fast reroute consists of three s.pdf:
1. A crash of a node used to forward traffic occurs ;
2. The crash is detected ;
3. A mechanism is activated to reroute the traffic to another route (e.g. backup LSP).

This technique was designed for RSVP at the first place. The RFC 4090, “ Fast
Reroute Extensions to RSVP-TE for LSP Tunnels” outlines the method thoroughly. In
Chapter 4 we saw a script to manually execute on edge routers, allowing a LSP switch
while traffic is still going through. This script can be improved in order to make a fast
reroute scenario.

5.4 Preemption

By the time of writing this master thesis, draft-deoliveira-diff-te-preemption-0X.txt be-
came the RFC 4829 — “Label Switched Path (LSP) Preemption Policies for MPLS
Traffic Engineering” .

“When the establishment of a higher priority (Traffic Engineering Label
Switched Path) TE LSP requires the preemption of a set of lower priority
TE LSPs, a node has to make a local decision to select which E[xplicitly
routed] LSPs will be preempted. The preempted LSPs are then rerouted by
their respective Head-end Label Switch Router (LSR). [The RFC] presents
a flexible policy that can be used to achieve different objectives: preempt the
lowest priority LSPs; preempt the minimum number of LSPs; preempt the
set of TE LSPs that provide the closest amount of bandwidth to the required
bandwidth for the preempting TE LSPs (to minimize bandwidth wastage);
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preempt the LSPs that will have the maximum chance to get rerouted. [...]
A comparison among several different policies, with respect to preemp-
tion cascading, number of preempted LSPs, priority, wasted bandwidth and
blocking probability is also included.” [8]

The main difference with the tests previously done is that resource reservation is
needed. The resource reservation was not taken into account all along this thesis. Hence,
using the virtual testbed to test preemption policies can provide a good start to obtain
clear results.

This document can be resourceful for those who intend to test these new methods
for MPLS on a virtual testbed.
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CERTIFICATE AROMA
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Chapter A. Certificate AROMA

Department of Signal L)
Theory and Communications (")

UNIVERSITAT POLITECNICA DE CATALUNYA

Dr. Fernando Casadevall Palacio, Professor at Department of Signal Theory and
Communication of UPC (Barcelona, Spain), as project manager of the AROMA
(Advanced Resource management solutions for future all IP heterOgeneous Mobile
rAdio environments) project, funded by European Union, Ref. IST-4-027567:

CERTIFIES THAT:

Julien Bisconti, student at the FUNDP (Namur, Belgium), has done five months
traineeship at UPC, working with the AROMA project research team. He has
accomplished the following tasks:

- Extend the testbed with three computers in order to fulfill the requirements
of AROMA project ;

- Install MPLS (MultiProtocol Label Switching) on the AROMA testbed ;

- Install the needed programs in order to use LDP (Label Distribution
Protocol) ;

- Automate the connection/login to all the testbed nodes ;

- Start to develop the code for CR-LDP (Constraint-base Routing — Label
Distribution Protocol).

And in witness thereof, signs the present certificate,

— :
‘ Depariament de Teorla .
! L?f“ Senyal | Comunicacions Fernando Casadevall Palacio
TNIVERSITAT POLITECNICA DE CATALUNYA

Barcelona, January 10, 2007

Figure A.1: Certificate from UPC for the AROMA testbed.



APPENDIX B

ENLARGE NETKIT FILESYSTEM

This is the method to enlarge the Netkit filesystem. It might requiere this :
1. Every command must be executed on the host, not on the guest.

2. The user is able to mount a image file to a loop device (i.e. administrative rights are
correctly set).

3. A backup of the image file should be done

B.1 Checking Filesystem Consistency (optional)

Attach the filesystem to a loop device. See “man netkit-filesystem” for more information
$ losetup -0 16384 /dev/loop0 $SNETKIT_HOME/fs/netkit-fs-F2.2

Check if the filesystem is consistent.

$ e2fsck -f /dev/loop0

Detach from loop device.

$ losetup -d /dev/loop0

Table B.1: Checking filesystem consistency
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B.2 Resizing Filesystem

Replace "newsize” by the size wanted (for example: 2G).

$ dd if=/dev/zero of=$SNETKIT _HOME/fs/netkit-fs-F2.2 bs=1 count=1
seek=""newsize’’ conv=notrunc

Attach the filesystem to a loop device.

$ losetup -0 16384 /dev/loop0 SNETKIT_HOME/fs/netkit-fs-F2.2
Resize the filesystem.”

$ resize2fs -p /dev/loop0

Check if the filesystem is consistent.

$e2fsck -f /dev/loop0

Detach from loop device.

$ losetup -d /dev/loop0

Table B.2: Resizing filesystem.

“http://user-mode-linux.sourceforge.net/resize.html
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B.3 Install new software

Once the filesystem expanded, mount it.

$ mount -0 loop,offset=16384 SNETKIT_HOME/fs/netkit-fs-F2.2 /mnt/loop
Mount the /proc filesystem.

$ mount -t proc proc /mnt/loop/proc

To access to the physical device from the chrooted environment, bind them.
$ mount -o bind /dev /mnt/loop/dev

To access to the Internet, copy the resolv.conf file

$ cp /etc/resolv.conf /mnt/loop/etc/resolv.conf

Then, chroot into the filesystem.

$ chroot /mnt/loop/ /bin/bash

Set the profile.

$ source /etc/profile & & source /root/.bashrc

Modify the /etc/apt/sources.list to have the closest mirror

$ vim /etc/apt/sources.list

Update the package list and upgrade softwares

$ apt-get update && apt-get upgrade

Table B.3: Install new software.
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QUAGGA CONFIGURATION FILE

Here is an example of the zebra configuration file for IR1:

!
! zebra configuration file
!
hostname zebrad
password root

enable password root
service advanced-vty
!
!

log file /var/log/quagga/zebra.log
debug zebra kernel

debug zebra events

!
line vty
exec-timeout 0 0
!
interface ethQ

mpls labelspace 0

ip address 192.168.10.1/24
!
interface ethl
mpls labelspace 0

ip address 192.168.30.1/24
!
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Here is an example of the ospfd configuration file for IR1:

!
hostname ospfd

password root

enable password root

!

log file /var/log/quagga/ospfd.log
interface lo

!
interface ethO
!
interface ethl

!

router ospf

network 192.168.10.1/24 area O
network 192.168.20.1/24 area O
network 192.168.30.1/24 area O
network 192.168.40.1/24 area O
network 192.168.50.1/24 area 0
network 192.168.70.1/24 area O
network 192.168.80.1/24 area O

network 192.168.90.1/24 area O
!
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APPENDIX D

MPLS COMMAND SYNTAX

Usage: mpls ilm CMD label LABEL labelspace NUMBER [proto PROTO | instructions INSTR]

mpls nhlfe CMD key KEY [mtu MTU propagate_ttl | instructions INSTR]
mpls xc CMD ilm_label LABEL ilm_labelspace NUMBER nhlfe_key KEY
mpls labelspace set dev NAME labelspace NUMBER

mpls labelspace set dev NAME labelspace -1

mpls tunnel CMD dev NAME nhlfe KEY

mpls ilm show [label LABEL labelspace NUMBER]

mpls nhlfe show [key KEY]

mpls xc show [ilm_label LABEL ilm_labelspace NUMBER]
mpls labelspace show [dev NAME]

mpls monitor

Where:

CMD := add | del | change

NUMBER := 0 255

TYPE := gen | atm | fr

VALUE := 16 1048575 | <VPI>/<VCI> | 16 .. 1023
LABEL := TYPE VALUE

KEY := 0 for add | previously returned key
NAME := network device name (i.e. ethO)

PROTO := ipv4 | ipve6

ADDR := 1ipv6 or ipv4 address

NH := nexthop NAME [none|packet |PROTO ADDR]
FWD := forward KEY

PUSH := push LABEL

INSTR := NH | PUSH | pop | deliver | peek | FWD |

set-dscp <DSCP> | set-exp <EXP> |

set-tcindex <TCINDEX> | set-rx—if <NAME>

forward <KEY> | expfwd <EXP> <KEY> ... |

exp2tc <EXP> <TCINDEX> ... | exp2ds <EXP> <DSCP>
nffwd <MASK> [ <NFMARK> <KEY> ... ] |

nf2exp <MASK> [ <NFMARK> <EXP> ... ] |

tc2exp <MASK> [ <TCINDEX> <EXP> ... ] |

ds2exp <MASK> [ <DSCP> <EXP> ... ] |

dsfwd <MASK> [ <DSCP> <KEY> ... ]
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AROMA STARTING SCRIPT

#!/bin/bash

(g dsdaaadddddsaaaadddssaaddlddsdaaadidsdssadd
#

# This script was generated by NetML

# and adapt by me to fit my needs.

# You can easily adapt this script.

# Mail: julien.bisconti@student. fundp.ac.be

#

[ddaa i ddsaadaddddsaaaddddsdaaddddsdsaaid
SCRIPTNAME= ‘echo $0 | awk —vFS=’/" *{print $NF} °
#EXEC=/hosthome $ {PWD#$HOME} ${0# . "}

allexecute ()

{
echo "xxxxxx SETTING IP FORWARD”
echo 71”7 > /proc/sys/net/ipv4/ip_forward
echo
echo 7 xxxxxx LOADING MPLS MODULES”
/sbin/modprobe mpls # main module
/sbin/modprobe mpls4 # 1Pv4
/sbin/modprobe mpls6 # IPv6
/sbin/modprobe mplsbr # bridge
/sbin/modprobe ebt_mpls # ebtables bridge
/sbin/modprobe mpls_tunnel # tunnel interface
/sbin/modprobe ip6t_mpls # iptables
/sbin/modprobe ipt-mpls # iptables IPv4
echo
echo "—— MPLS MODULES ——— LOADED”
mkdir /var/log/quagga

}

start_deamon ()

{

echo 7xxxx+x+x STARTING DEAMONS”

/usr/local/sbin/zebra —d —A 127.0.0.1
/usr/local/sbin/ospfd —d —A 127.0.0.1
#/usr/local/sbin/ldpd —d —A 127.0.0.1
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Chapter E. AROMA Starting Script

/usr/local/sbin/ldpd —d —A 127.0.0.1
STARTED”

echo "——— DEAMONS

}
help_exit ()

echo ”Usage:$0 {start|crash}”

echo 7> lab start ”

echo ”Starts all virtual machines for the
echo ”> lab crash ”

echo ”Crashs all virtual

exit 1

[l g iddid diddid didis dddia g gy diais i ddaid
## START / CRASH virtual machines ##
[l ddid didaid didiadiddidd gy dia b
waitfinish ()

{
SEMAPHORE=$1 . booting
touch $SEMAPHORE
while [ —f $SEMAPHORE ]; do
sleep 2
done
#sleep 3
}

notifyfinish ()

rm $1.booting

}

startvm ()

{

machines and delete

lab ”

.disk files ”

#—append=ubdl =/home/umpls/Netkit/netkit2 /fs/my—netkit—fs

X="—new —exec=/hosthome /${PWD#$HOME } / $ {SCRIPTNAME } *

this

|

directory

if [ —e r-IRI1—IR1.disk ] ||
[ —e r_IR2—IR2.disk ] H
[ —e r-.CR1-CRI.disk 1 ||
[ —e r.CR2—CR2.disk ] ||
[ —e r-.CR3—CR3.disk 1 ||
[ —e r.CR4—CR4.disk ] ||
[ —e r.ER—ER. disk | ; then
echo ”$0: some .disk file exists in
echo ” launch ”$0 crash” first”
exit 1
fi
vstart r_.SRC—SRC —eth0=SRC1 —eth1=SRC2 $X
waitfinish r_-SRC—-SRC
vstart r_IR1—IR1 —eth0=0OIRl —eth1=SRCI $X
waitfinish r_IR1-IRI
vstart r_.IR2—IR2 —eth0=0IR2 —eth1=SRC2 $X
waitfinish r_IR2—-IR2
vstart r1_.CR1—CR1 —eth0=0IR1 —eth1=0IR2 —eth2=ICN1 $X
waitfinish r_.CRI1—CRI1
vstart r_.CR2—CR2 —eth1=0ERl —eth2=ICN1 $X

waitfinish r_.CR2—CR2
vstart r_.CR3—CR3 —eth1=ICN2 —eth2=ICNI
waitfinish r_.CR3—CR3
vstart
waitfinish r_CR4—CR4
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vstart r_ER—ER —eth0=0OER]l —eth1=DST1 $X

waitfinish r.ER—ER
vstart r_DST-DST —eth0=DST1 $X
echo ’’

echo ’ x%x all machines started sxx’

}

crashvm ()

{
vcrash r_SRC—-SRC
verash r_IR1-IR1
vcrash r_IR2—-IR2
vcrash r_.CR1—CRI
vcrash r_.CR2—CR2
vcrash r_.CR3—CR3
vcrash r_.CR4—CR4
vcrash r_ER—ER
vcrash r_.DST-DST

}

#RRBRARAAAAAA AR HH GG HRRRRRRAAAAAAA A
#####n#  NETWORKING FILES ####H#H
#RRBRBRAAAAAA A A A GG HRRRR AR AR
make_ospfd_file ()

{

cat > /usr/local/etc/ospfd.conf << EOF
!

hostname ospfd

password root

enable password root

!

log file /var/log/quagga/ospfd.log
EOF

}

make_zebra_file ()

{

cat > /usr/local/etc/zebra.conf << EOF
! —«— zebra —x—

!

! zebra configuration file
!

hostname zebrad

password root

enable password root
service advanced—vty

!

!

log file /var/log/quagga/zebra.log
debug zebra kernel

debug zebra events

!

line vty

exec—timeout 0 0

!

EOF

}

make_ldpd_file ()
{
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cat > /usr/local/etc/ldpd.conf <<EOF
|

hostname ldpd

password root

enable password root

!

log file /var/log/quagga/ldpd.log
EOF

}

make_quagga_file ()
{

make_zebra_file
make_ospfd_file
make_ldpd_file

}

RARRRRRHAAARRRRGARARRRRRAARARRRRRAAARRRRRAGAAHRARRAAARRARRAHHH
##t### MAIN SCRIPT #AHHH
RAHARRR G HAAARRR G HAAARRRG G HAARRRRGHAAARR ARG AARRRRA A AAARRRRA HHH

if [ ”$1” = ”start” ]; them startvm
lif [ ”$1” = ”crash” ]; then
crashvm
rm —f x.disk *.booting
elif [ ”$1” = ”clean” ]; then

rm —f x.disk *.booting x*.log

echo ”All \”.disk\” \”.booting\” \”.log\” files are deleted”

elif [ ! —z $1 ]; then help_exit

elif [ —z $1 ]; then
if [ ‘id —u® != 70” ]; then help_exit
fi

SCRIPTFILE=‘cat /proc/cmdline | awk —v FS== —v RS=" ~
SCRIPTDIR=${ SCRIPTFILE %/${SCRIPTNAME} }

echo changing directory to $SCRIPTDIR

cd $SCRIPTDIR

case “$SHOSTNAME” in

r_.SRC—SRC)
### SRC ###

{if ($1=="exec”) print $2}’

/sbin/ifconfig ethO 192.168.30.2 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.40.2 netmask 255.255.255.0 up

make_quagga_file
notifyfinish r_.SRC—SRC
allexecute

# ZEBRA
echo ”!” >> /usr/local/etc/zebra.conf
echo “interface ethO” >> /usr/local/etc/zebra.

conf

echo ”ip address 192.168.30.2/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf
echo “interface ethl” >> /usr/local/etc/zebra.

conf

echo ”ip address 192.168.40.2/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo “interface lo” >> /usr/local/etc/ospfd.conf

echo ”!” >> /usr/local/etc/ospfd.conf
echo “interface ethO” >> /usr/local/etc/ospfd.
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R

>> /usr/local/etc/ospfd.conf

echo “interface ethl” >> /usr/local/etc/ospfd.conf

echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
”1” >> /usr/local/etc/ospfd.conf

/usr/local/sbin/zebra —d —A 127.0.0.1 —f /usr/local/etc/zebra.conf
/usr/local/sbin/ospfd —d —A 127.0.0.1 —f /usr/local/etc/ospfd.conf

>

r_IR1-IR1)
### IR1 ###

/sbin/ifconfig ethO0 192.168.10.1 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.30.1 netmask 255.255.255.0 up
make_quagga_file

notifyfinish r_IR1-IR1

allexecute

# ZEBRA

echo ”!” >> /usr/local/etc/zebra.conf

echo “interface eth0O” >> /usr/local/etc/zebra.conf

echo ”mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.10.1/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf

echo “interface ethl” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.30.1/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo ”interface lo” >> /usr/local/etc/ospfd.conf

echo ”!” >> /usr/local/etc/ospfd.conf

echo ”interface ethO” >> /usr/local/etc/ospfd.conf

echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethl” >> /usr/local/etc/ospfd.conf

echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7! >> /usr/local/etc/ldpd. conf

#echo “interface lo” >> /usr/local/etc/ldpd. conf
#echo 7! >> /usr/local/etc/ldpd. conf
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#echo ”interface eth0” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo “interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

start_deamon
s

r.IR2—-IR2)
### IR2 ###

/sbin/ifconfig ethO 192.168.20.1 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.40.1 netmask 255.255.255.0 up
make_quagga_file

notifyfinish r_IR2—IR2

allexecute

# ZEBRA

echo ”!” >> /usr/local/etc/zebra.conf

echo ”interface ethO” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.20.1/24” >> /usr/local/etc/zebra.conf
echo ”7!” >> /usr/local/etc/zebra.conf

echo ”interface ethl” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.40.1/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo “interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethO” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethl” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo “interface lo” >> /usr/local/etc/ldpd. conf
#echo 7!7 >> /usr/local/etc/ldpd. conf

#echo “interface eth0” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo ”interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

start_deamon
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’

r_.CR1—CR1)
### CRI ###

/sbin/ifconfig ethO 192.168.10.2 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.20.2 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.80.1 netmask 255.255.255.0 up
make_quagga_file

notifyfinish r.CR1I-CRI1

allexecute
# ZEBRA
echo ”!” >> /usr/local/etc/zebra.conf

echo ”interface ethO” >> /usr/local/etc/zebra.conf

echo “"mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.10.2/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf

echo ”interface ethl” >> /usr/local/etc/zebra.conf

echo "mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.20.2/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf

echo “interface eth2” >> /usr/local/etc/zebra.conf

echo ”"mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.80.1/24” >> /usr/local/etc/zebra.conf

# OSPFD

echo ”interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethO” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethl” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface eth2” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.10.2/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.20.2/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7! >> /usr/local/etc/ldpd. conf

#echo “interface lo” >> /usr/local/etc/ldpd. conf
#echo 7! >> /usr/local/etc/ldpd. conf

#echo “interface eth0” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!”7 >> /usr/local/etc/ldpd. conf

#echo “interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo ”interface eth2” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf
start_deamon
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>

r-CR2—CR2)
### CR2 ###

/sbin/ifconfig ethl 192.168.50.1 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.80.2 netmask 255.255.255.0 up
make_quagga_file

notifyfinish r_.CR2—CR2

allexecute
# ZEBRA
echo ”!” >> /usr/local/etc/zebra.conf

echo “interface ethl” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.50.1/24” >> /usr/local/etc/zebra.conf
”1” >> [usr/local/etc/zebra.conf

echo “interface eth2” >> /usr/local/etc/zebra.conf

echo “"mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.80.2/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo “interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethO” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface eth2” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.80.2/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo “interface lo” >> /usr/local/etc/ldpd. conf
#echo 7!7 >> /usr/local/etc/ldpd. conf

#echo “interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo ”interface eth2” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

start_deamon
s

r_.CR3-CR3)
### CR3 ###

/sbin/ifconfig ethl 192.168.90.1 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.80.3 netmask 255.255.255.0 up
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make_quagga_file
notifyfinish r_.CR3—CR3
allexecute

# ZEBRA

echo ”!” >> /usr/local/etc/zebra.conf

echo ”interface ethl” >> /usr/local/etc/zebra.conf

echo ”"mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.90.1/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf

echo “interface eth2” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.80.3/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo ”interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo ”interface ethl” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo ”interface eth2” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.80.3/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7! >> /usr/local/etc/ldpd. conf

#echo "interface lo” >> /usr/local/etc/ldpd. conf
#echo 7! >> /usr/local/etc/ldpd. conf

#echo ”interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo "interface eth2” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

start_deamon

r_.CR4—CR4)
### CR4 ###

/sbin/ifconfig ethl 192.168.90.2 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.50.3 netmask 255.255.255.0 up
make_quagga_file

notifyfinish r_.CR4—CR4

allexecute

# ZEBRA

echo ”!” >> /usr/local/etc/zebra.conf
echo ”interface ethl” >> /usr/local/etc/zebra.conf
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echo "mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.90.2/24” >> /usr/local/etc/zebra.conf
”1” >> /usr/local/etc/zebra.conf

echo “interface eth2” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.50.3/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo ”interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethl” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface eth2” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.90.2/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.50.3/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo "interface lo” >> /usr/local/etc/ldpd. conf
#echo 7!” >> /usr/local/etc/ldpd. conf

#echo ”interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo “interface eth2” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

start_deamon
s

r_.ER-ER)
### ER ###

/sbin/ifconfig eth0 192.168.50.2 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.70.1 netmask 255.255.255.0 up
make_quagga_file

notifyfinish r_ER—ER

allexecute
# ZEBRA
echo ”!” >> /usr/local/etc/zebra.conf

echo ”interface ethO” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.50.0/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf

echo ”interface ethl” >> /usr/local/etc/zebra.conf

echo “mpls labelspace 0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.70.1/24” >> /usr/local/etc/zebra.conf
echo ”!” >> /usr/local/etc/zebra.conf
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# OSPFD

echo “interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethO” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethl” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.50.2/24 area 0” >> /usr/local/etc/ospfd. conf
#echo "network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

# LDPD

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo “interface lo” >> /usr/local/etc/ldpd. conf
#echo 7!” >> /usr/local/etc/ldpd. conf

#echo “interface eth0” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

#echo 7!” >> /usr/local/etc/ldpd. conf

#echo ”interface ethl” >> /usr/local/etc/ldpd. conf
#echo "mpls ip” >> /usr/local/etc/ldpd. conf

start_deamon
s

r_DST-DST)
### DST ###

/sbin/ifconfig ethO0 192.168.70.2 netmask 255.255.255.0 up
notifyfinish r_-DST-DST

make_quagga_file

allexecute

# ZEBRA

echo ”!” >> /usr/local/etc/zebra.conf

echo “interface eth0” >> /usr/local/etc/zebra.conf

echo ”ip address 192.168.70.2/24” >> /usr/local/etc/zebra.conf

echo ”!” >> /usr/local/etc/zebra.conf

# OSPFD

echo “interface lo” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “interface ethO” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo ”interface ethl” >> /usr/local/etc/ospfd.conf
echo ”!” >> /usr/local/etc/ospfd.conf

echo “router ospf” >> /usr/local/etc/ospfd.conf

echo “network 192.168.10.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.20.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.30.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.40.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.50.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd.conf
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echo “network 192.168.80.1/24 area 0” >> /usr/local/etc/ospfd.conf
echo “network 192.168.90.1/24 area 0” >> /usr/local/etc/ospfd.conf
#echo "network 192.168.70.1/24 area 0” >> /usr/local/etc/ospfd. conf
echo ”!” >> /usr/local/etc/ospfd.conf

/usr/local/sbin/zebra —d —A 127.0.0.1 —f /usr/local/etc/zebra.conf
/usr/local/sbin/ospfd —d —A 127.0.0.1 —f /usr/local/etc/ospfd.conf

*)
echo ”error:don\’t know how to configure $HOSTNAME ~
exit 1



APPENDIX F

REROUTING SCRIPT

F.1 Setup Script

#!/bin/bash
[t d it ddadddddaddaadddaddadddaddadddsadsa
AROMA TESTBED

PREEMPTION of LSP.
Mail: julien.bisconti@student. fundp.ac.be

HoW W W W K

HARRHHARTAR ARG ARAARRRRAARARRRRRA G HAATRARRR G AAATAA

SCRIPTNAME= ‘echo $0 | awk —vFS="/" *{print $NF}’ *
#EXEC=/hosthome $ {PWD#SHOME} $ { 0# . '}

allexecute ()

{
echo "xxxxxx SETTING IP FORWARD”
echo 717 > /proc/sys/net/ipv4/ip_forward
echo "xxxxxx TURNING OFF MPLS DEBUG”
echo 70” > /sys/mpls/debug
echo 7xxxx+xx LOADING MPLS MODULES”
/sbin/modprobe mpls # main module
/sbin/modprobe mpls4 # 1Pv4
/sbin/modprobe mpls6 # IPv6
/sbin/modprobe mplsbr # bridge
/sbin/modprobe ebt_mpls # ebtables bridge
/sbin/modprobe mpls_tunnel # tunnel interface
/sbin/modprobe ip6t_mpls # iptables IPv6
/sbin/modprobe ipt_mpls # iptables IPv4
echo
echo "—— MPLS MODULES ——— LOADED”

}

help_exit ()

echo “"Usage:$0 {start|crash}”
echo 7> lab start ”
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”»

echo ”Starts all virtual machines for the lab
echo 7> lab crash ”

echo ”Crashs all virtual machines and delete .disk files
exit 1

2

[l diddd diddid ddisdddia gy didid g i
## START / CRASH virtual machines ##
[l ddda didadddiadddia sl dddi s
waitfinish ()

{
SEMAPHORE=$1 . booting
touch $SEMAPHORE
while [ —f $SEMAPHORE ]; do
sleep 1
done
#sleep 3
}

notifyfinish ()

rm $1.booting

}

startvm ()

{
#In case you want to add another filesystem to your vm.
#—append=ubdl =/home/umpls/Netkit/netkit2/fs/my—netkit—fs

X="—new —exec=/hosthome /${PWD#$HOME }/${SCRIPTNAME}”

if [ —e r IR1-IR1.disk ] ||
[ —e r_.IR2—IR2.disk
[ —e r.CR1—CRI.disk
[ —e r.CR2—CR2. disk
[ —e r_.CR3—CR3.disk
[ —e r.CR4—CR4. disk
[ —e r.ER—ER. disk ] ; then
echo ”$0: some .disk file exists in this directory!”
echo ” launch ”$0 crash” first”
exit 1

— e

fi
vstart r1_.SRC—SRC —eth0=SRCl —eth1=SRC2 $X

waitfinish r_SRC—SRC

vstart r_IR1—IR1 —eth0=0OIRl —eth1=SRCI $X

waitfinish r_.IR1-IR1

vstart Tr_IR2—IR2 —eth0=0IR2 —eth1=SRC2 $X

waitfinish r_.IR2-IR2

vstart r_CR1—CRI —eth0=0OIRl —eth1=0IR2 —eth2=ICNI1 $X
waitfinish r_.CR1—CRI1

vstart r_CR2—CR2 —eth1=0OERl —eth2=ICN1 $X

waitfinish r_.CR2—CR2

vstart r_.CR3—CR3 —ethl1=ICN2 —eth2=ICN1 $X

waitfinish r_.CR3—CR3

vstart r1_.CR4—CR4 —eth1=ICN2 —eth2=0ER1 $X

waitfinish r_.CR4—CR4

vstart r_.ER—ER —eth0=0OER1 —eth1=DSTI1 $X

waitfinish r_.ER—ER

vstart r_.DST-DST —eth0=DST1 $X

echo ’°

echo

}

5

#x% all machines started sxx’
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crashvm ()

{
vecrash r_SRC—-SRC
vcrash r_IR1-IR1
vcrash r_IR2—-IR2
vcrash r_.CRI—CRI1
vcrash r_.CR2—CR2
vcrash r_.CR3—CR3
vcrash r_.CR4—CR4
vcrash r_.ER—ER
vcrash r_DST-DST

RARAARRRRHARARRRRGARARRRRRAAAARRRRRARAARRRRA G AARRARRAHAAHAARA S
#it### MPLS FUNCTIONS HA##H
RARRRRAHAAHRARRGARATRRRRRHAAARRRRGARARRRRRARARRRRRRAAARRRRRAHAH

# SETUP two LSPs, each one is a 2—way LSP.
mplsconf ()

case “$SHOSTNAME” in
r_.SRC—SRC)

# routing info
ip route add 192.168.70.2 via 192.168.30.1 # DST via IRI

5

F

r.IR1-IR1)

# A DOWNSTREAM SRC—>CRI ethl —>eth0

# Create a NHLFE entry to add label 1000 and

# forward the packets to 192.168.10.2 using outgoing interface ethO.
key_l=‘mpls nhlfe add key O instructions push gen 1000 nexthop ethO \
ipv4 192.168.10.2 | grep key | cut —c 17-26° #(returns key 0x2)

#FEC to NHLFE
/usr/sbin/ip route add 192.168.70.2/32 via 192.168.30.1 mpls $key-1

# A UPSTREAM CRI—>SRC ethO—>ethl

mpls labelspace set dev ethO labelspace 0

mpls ilm add label gen 1007 labelspace 0

key_2=‘mpls nhlfe add key O instructions nexthop ethl \

ipv4 192.168.30.2 | grep key | cut —c 17-26° #(returns key 0x3)
mpls xc add ilm_label gen 1007 ilm_labelspace 0 nhlfe_key $key_2

# B DOWNSTREAM SRC—>CRI ethl —>eth0
key-3=‘mpls nhlfe add key O instructions push gen 2000 nexthop ethO \
ipv4 192.168.10.2 | grep key | cut —c 17-26° #(returns key 0x4)

#/usr/sbin/ip route add 192.168.70.2/32 via 192.168.30.1 mpls 0x4

# B UPSTREAM CRI—>SRC ethO—>ethl

mpls labelspace set dev ethO labelspace 0

mpls ilm add label gen 2005 labelspace 0

key_4=‘mpls nhlfe add key O instructions nexthop ethl ipv4 192.168.30.2 | grep key | cut —c 17-26°
#(returns key 0x5)

mpls xc add ilm_label gen 2005 ilm_labelspace 0 nhlfe_key $key_4

109



F.1. Setup Script Chapter F. Rerouting Script

I

J

r_IR2—IR2)
#Not really useful right now!!

5

Fr

r.CR1—CR1)

# A DOWNSTREAM IRI—>CR3 ethO—>eth?2

mpls labelspace set dev ethO labelspace 0

mpls ilm add label gen 1000 labelspace 0

key_1=‘mpls nhlfe add key O instructions push gen 1001 nexthop eth2 \
ipv4 192.168.80.3 | grep key | cut —c 17—26° # (returns key 0x2)

mpls xc add ilm_label gen 1000 ilm_labelspace O nhlfe_key $key_1

# A UPSTREAM CR3—>IR1 eth2—>eth0

mpls labelspace set dev eth2 labelspace 0

mpls ilm add label gen 1006 labelspace 0

key_2=‘mpls nhlfe add key O instructions push gen 1007 nexthop ethO \
ipv4d 192.168.10.1 | grep key | cut —c 17—26° # (returns key 0x3)

mpls xc add ilm_label gen 1006 ilm_labelspace O nhlfe_key $key_2

# B DOWNSTREAM IR1—>CR2 ethO—>eth?2

mpls labelspace set dev ethO labelspace 0

mpls ilm add label gen 2000 labelspace 0

key_3=‘mpls nhlfe add key O instructions push gen 2001 nexthop eth2 \
ipv4 192.168.80.2 | grep key | cut —c 17-26° # (returns key 0x4)

mpls xc add ilm_label gen 2000 ilm_labelspace O nhlfe_key $key_3

# B UPSTREAM CR2—>IR1 eth2—>eth0

mpls labelspace set dev eth2 labelspace 0

mpls ilm add label gen 2004 labelspace 0

key_4=‘mpls nhlfe add key O instructions push gen 2005 nexthop ethO \
ipv4 192.168.10.1 | grep key | cut —c 17-26° # (returns key 0x5)

mpls xc add ilm_label gen 2004 ilm_labelspace O nhlfe_key $key_4

5

F*r

r_.CR2—CR2)

# B DOWNSTREAM CRI—>ER eth2—>ethl

mpls labelspace set dev eth2 labelspace 0

mpls ilm add label gen 2001 labelspace 0

key_1=‘mpls nhlfe add key O instructions push gen 2002 nexthop ethl \
ipv4d 192.168.50.2 | grep key | cut —c 17-26° #(returns key 0x2)

mpls xc add ilm_label gen 2001 ilm_labelspace 0 nhlfe_key $key-1

# B UPSTREAM ER—>CRI ethl —>eth2

mpls labelspace set dev ethl labelspace 0

mpls ilm add label gen 2003 labelspace 0

key_-2=‘mpls nhlfe add key O instructions push gen 2004 nexthop eth2 \
ipv4d 192.168.80.1 | grep key | cut —c 17-26° #(returns key 0x3)

mpls xc add ilm_label gen 2003 ilm_labelspace 0 nhlfe_key $key_2

5

J

r_.CR3—CR3)
# A DOWNSTREAM CRI—>CR4 eth2—>ethl

mpls labelspace set dev eth2 labelspace 0
mpls ilm add label gen 1001 labelspace 0O
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key_1=‘mpls nhlfe add key O instructions push gen 1002 nexthop ethl \
ipv4 192.168.90.2 | grep key | cut —c 17-26° #(returns key 0x2)
mpls xc add ilm_label gen 1001 ilm_labelspace 0 nhlfe_key S$key_1

# A UPSTREAM CR4—>CRI ethl —>eth2

mpls labelspace set dev ethl labelspace 0

mpls ilm add label gen 1005 labelspace 0

key_2=‘mpls nhlfe add key O instructions push gen 1006 nexthop eth2 \
ipv4 192.168.80.1 | grep key | cut —c 17-26° #(returns key 0x3)

mpls xc add ilm_label gen 1005 ilm_labelspace 0 nhlfe_key $key_2

2

r.CR4—CR4)

# A DOWNSTREAM CR3—>ER ethl —>eth?2

mpls labelspace set dev ethl labelspace 0

mpls ilm add label gen 1002 labelspace 0

key_1=‘mpls nhlfe add key O instructions push gen 1003 nexthop eth2 \
ipvd 192.168.50.2 | grep key | cut —c 17—26° #(returns key 0x2)

mpls xc add ilm_label gen 1002 ilm_labelspace O nhlfe_key $key_1

# A UPSTREAM ER—>CR3 eth2—>ethl

mpls labelspace set dev eth2 labelspace 0

mpls ilm add label gen 1004 labelspace 0

key_2=‘mpls nhlfe add key O instructions push gen 1005 nexthop ethl \
ipv4 192.168.90.1 | grep key | cut —c 17-26° #(returns key 0x3)

mpls xc add ilm_label gen 1004 ilm_labelspace O nhlfe_key $key.2

5

r.ER—ER)

# A DOWNSTREAM CR4—>DST ethO—>ethl

mpls labelspace set dev ethO labelspace 0

mpls ilm add label gen 1003 labelspace 0

key-1=‘mpls nhlfe add key O instructions nexthop ethl \

ipv4 192.168.70.2 | grep key | cut —c 17—26° #(returns key 0x2)
mpls xc add ilm_label gen 1003 ilm_labelspace O nhlfe_key $key-1

# A UPSTREAM DST—>CR4 ethl—>eth0

key_2=‘mpls nhlfe add key O instructions push gen 1004 nexthop ethO \
ipvd 192.168.50.3 | grep key | cut —c 17—26° #(returns key 0x3)
/usr/sbin/ip route add 192.168.30.2/32 via 192.168.70.1 mpls $key_2

# B DOWNSTREAM CR4—>DST ethO—>ethl

mpls labelspace set dev ethO labelspace 0

mpls ilm add label gen 2002 labelspace 0

key_3=‘mpls nhlfe add key O instructions nexthop ethl \

ipv4 192.168.70.2 | grep key | cut —c 17-26° #(returns key 0x4)
mpls xc add ilm_label gen 2002 ilm_labelspace O nhlfe_key $key.3

# B UPSTREAM DST—>CR4 ethl—>eth0
key_4=‘mpls nhlfe add key O instructions push gen 2003 nexthop eth0O \
ipv4 192.168.50.1 | grep key | cut —c 17—26° #(returns key 0x5)

#/usr/sbin/ip route add 192.168.30.2/32 via 192.168.70.1 mpls S$key_4

5

F

r-DST-DST)
ip route add 192.168.30.2 via 192.168.70.1 # SRC via ER
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5
*)

exit 1

esac

HARHARGAAR ARG ARRAARR ARG AR GARGARRAARRARRAARRGARRARRGARR AR
##### MAIN SCRIPT #AHAH
HARHBARBARRHARRARRAARRHRRBARRGARRHRRAARRARRAARRHARRHRRGARR AR H

if [ 7$1” = ”start” ]; then
startvm

elif [ 7”$1” = “crash” ]; then
crashvm

rm —f x.disk *.booting

elif [ ”$1” = ”clean” ]; then
rm —f x.disk *.booting x*.log
echo ”All \”.disk\” \”.booting\” \”.log\” files are deleted”

elif [ ! —z $1 ]; then
help_exit

elif [ —z $1 ]; then

if [ ‘id —u® != 70” ]; then
help_exit
fi
SCRIPTFILE=‘cat /proc/cmdline | awk —v FS== —v RS=" * ’{if($1=="exec”) print $2}

SCRIPTDIR=${SCRIPTFILE %/$ {SCRIPTNAME} }
echo changing directory to $SCRIPTDIR
cd $SCRIPTDIR

case “"$SHOSTNAME” in

r_.SRC—SRC)

### SRC ###
/sbin/ifconfig ethO 192.168.30.2 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.40.2 netmask 255.255.255.0 up
notifyfinish r_.SRC—SRC
allexecute
mplsconf

2

r.IR1-IR1)
### IR1 ###

/sbin/ifconfig ethO0 192.168.10.1 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.30.1 netmask 255.255.255.0 up
notifyfinish r_IRI—IRI1

allexecute

mplsconf
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r.IR2—-IR2)
### IR2 ###

/sbin/ifconfig ethO0 192.168.20.1 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.40.1 netmask 255.255.255.0 up
notifyfinish r_IR2—IR2

allexecute

mplsconf

2

r.CR1—CRI)
### CRI ###

/sbin/ifconfig ethO 192.168.10.2 netmask 255.255.255.0 up
/sbin/ifconfig ethl 192.168.20.2 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.80.1 netmask 255.255.255.0 up
notifyfinish r_.CR1—CRI1

allexecute

mplsconf

2

r-CR2—CR2)
### CR2 ###

/sbin/ifconfig ethl 192.168.50.1 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.80.2 netmask 255.255.255.0 up
notifyfinish r_.CR2—CR2

allexecute

mplsconf

2

r_.CR3—CR3)
### CR3 ###

/sbin/ifconfig ethl 192.168.90.1 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.80.3 netmask 255.255.255.0 up
notifyfinish r_.CR3—CR3

allexecute

mplsconf

r-CR4—CR4)
### CR4 ###

/sbin/ifconfig ethl 192.168.90.2 netmask 255.255.255.0 up
/sbin/ifconfig eth2 192.168.50.3 netmask 255.255.255.0 up
notifyfinish r.CR4—CR4

allexecute

mplsconf

2

r_.ER-ER)
### ER ###

/sbin/ifconfig ethO 192.168.50.2 netmask 255.255.255.0 up
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/sbin/ifconfig ethl 192.168.70.1 netmask 255.255.255.0 up
notifyfinish r_.ER—ER

allexecute

mplsconf

>

r-DST-DST)
### DST ###

/sbin/ifconfig ethO0 192.168.70.2 netmask 255.255.255.0 up
notifyfinish r_.DST-DST

allexecute

mplsconf

*)
echo "error:don\’t know how to configure $HOSTNAME ~
exit 1

esac
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